Chapter 2: Problem 5
What is heat generation in a solid? Give examples.
Chapter 2: Problem 5
What is heat generation in a solid? Give examples.
All the tools & learning materials you need for study success - in one app.
Get started for freeA spherical communication satellite with a diameter of \(2.5 \mathrm{~m}\) is orbiting the earth. The outer surface of the satellite in space has an emissivity of \(0.75\) and a solar absorptivity of \(0.10\), while solar radiation is incident on the spacecraft at a rate of $1000 \mathrm{~W} / \mathrm{m}^{2}$. If the satellite is made of material with an average thermal conductivity of \(5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) and the midpoint temperature is \(0^{\circ} \mathrm{C}\), determine the heat generation rate and the surface temperature of the satellite.
What is the difference between the degree and the order of a derivative?
What is a variable? How do you distinguish a dependent variable from an independent one in a problem?
Consider a water pipe of length \(L=17 \mathrm{~m}\), inner radius $r_{1}=15 \mathrm{~cm}\(, outer radius \)r_{2}=20 \mathrm{~cm}$, and thermal conductivity \(k=14 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). Heat is generated in the pipe material uniformly by a \(25-\mathrm{kW}\) electric resistance heater. The inner and outer surfaces of the pipe are at \(T_{1}=60^{\circ} \mathrm{C}\) and \(T_{2}=80^{\circ} \mathrm{C}\), respectively. Obtain a general relation for temperature distribution inside the pipe under steady conditions and determine the temperature at the center plane of the pipe.
A circular metal pipe has a wall thickness of \(10 \mathrm{~mm}\) and an inner diameter of \(10 \mathrm{~cm}\). The pipe's outer surface is subjected to a uniform heat flux of \(5 \mathrm{~kW} / \mathrm{m}^{2}\) and has a temperature of \(500^{\circ} \mathrm{C}\). The metal pipe has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=7.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, \)\beta=0.0012 \mathrm{~K}^{-1}\(, and \)T$ is in \(\mathrm{K}\). Determine the inner surface temperature of the pipe.
What do you think about this solution?
We value your feedback to improve our textbook solutions.