Chapter 2: Problem 40
It is claimed that the temperature profile in a medium must be perpendicular to an insulated surface. Is this a valid claim? Explain.
Chapter 2: Problem 40
It is claimed that the temperature profile in a medium must be perpendicular to an insulated surface. Is this a valid claim? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is a variable? How do you distinguish a dependent variable from an independent one in a problem?
Heat is generated in a long \(0.3-\mathrm{cm}\)-diameter cylindrical electric heater at a rate of \(150 \mathrm{~W} / \mathrm{m}^{3}\). The heat flux at the surface of the heater in steady operation is (a) \(42.7 \mathrm{~W} / \mathrm{cm}^{2}\) (b) \(159 \mathrm{~W} / \mathrm{cm}^{2}\) (c) \(150 \mathrm{~W} / \mathrm{cm}^{2}\) (d) \(10.6 \mathrm{~W} / \mathrm{cm}^{2}\) (e) \(11.3 \mathrm{~W} / \mathrm{cm}^{2}\)
Heat is generated in an 8-cm-diameter spherical radioactive material whose thermal conductivity is \(25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) uniformly at a rate of \(15 \mathrm{~W} / \mathrm{cm}^{3}\). If the surface temperature of the material is measured to be \(120^{\circ} \mathrm{C}\), the center temperature of the material during steady operation is (a) \(160^{\circ} \mathrm{C}\) (b) \(280^{\circ} \mathrm{C}\) (c) \(212^{\circ} \mathrm{C}\) (d) \(360^{\circ} \mathrm{C}\) (e) \(600^{\circ} \mathrm{C}\)
Consider a plane wall of thickness \(L\) whose thermal conductivity varies in a specified temperature range as \(k(T)=k_{0}\left(1+\beta T^{2}\right)\) where \(k_{0}\) and \(\beta\) are two specified constants.
A long electrical resistance wire of radius $k_{\text {wirc }}=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of $1.2 \mathrm{~W} / \mathrm{cm}^{3}$. The wire is covered with polyethylene insulation with a thickness of \(0.5 \mathrm{~cm}\) and thermal conductivity of $k_{\text {ins }}=0.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer surface of the insulation is subjected to convection and radiation with the surroundings at \(20^{\circ} \mathrm{C}\). The combined convection and radiation heat transfer coefficients is \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Formulate the temperature profiles for the wire and the polyethylene insulation. Use the temperature profiles to determine the temperature at the interface of the wire and the insulation and the temperature at the center of the wire. The ASTM D1351 standard specifies that thermoplastic polyethylene insulation is suitable for use on electrical wire with operation at temperatures up to \(75^{\circ} \mathrm{C}\). Under these conditions, does the polyethylene insulation for the wire meet the ASTM D1351 standard?
What do you think about this solution?
We value your feedback to improve our textbook solutions.