Chapter 2: Problem 23
Starting with an energy balance on a rectangular volume element, derive the one-dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and no heat generation.
Chapter 2: Problem 23
Starting with an energy balance on a rectangular volume element, derive the one-dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and no heat generation.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe conduction equation boundary condition for an adiabatic surface with direction \(n\) being normal to the surface is (a) \(T=0\) (b) \(d T / d n=0\) (c) \(d^{2} T / d n^{2}=0\) (d) \(d^{3} T / d n^{3}=0\) (e) \(-k d T / d n=1\)
A metal plate with a thickness of \(5 \mathrm{~cm}\) and a thermal conductivity of \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) has its bottom surface subjected to a uniform heat flux of \(2250 \mathrm{~W} / \mathrm{m}^{2}\). The upper surface of the plate is exposed to ambient air with a temperature of \(30^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2}$. K. A series of ASME SA-193 carbon steel bolts are bolted onto the upper surface of a metal plate. The ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HF-300) limits the maximum allowable use temperature to \(260^{\circ} \mathrm{C}\) for the \(\mathrm{SA}-193\) bolts. Formulate the temperature profile in the metal plate, and determine the location in the plate where the temperature begins to exceed $260^{\circ} \mathrm{C}\(. If the thread length of the bolts is \)1 \mathrm{~cm}$, would the \(\mathrm{SA}-193\) bolts comply with the ASME code?
Consider the base plate of an 800-W household iron with a thickness of $L=0.6 \mathrm{~cm}\(, base area of \)A=160 \mathrm{~cm}^{2}$, and thermal conductivity of \(k=20 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be \(85^{\circ} \mathrm{C}\). Disregarding any heat loss through the upper part of the iron, \((a)\) express the differential equation and the boundary conditions for steady one- dimensional heat conduction through the plate, \((b)\) obtain a relation for the variation of temperature in the base plate by solving the differential equation, and \((c)\) evaluate the inner surface temperature. Answer: (c) \(100^{\circ} \mathrm{C}\)
Consider a large 3-cm-thick stainless steel plate $(k=15.1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ in which heat is generated uniformly at a rate of \(5 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}\). Both sides of the plate are exposed to an environment at \(30^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(60 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Explain where in the plate the highest and the lowest temperatures will occur, and determine their values.
Consider uniform heat generation in a cylinder and in a sphere of equal radius made of the same material in the same environment. Which geometry will have a higher temperature at its center? Why?
What do you think about this solution?
We value your feedback to improve our textbook solutions.