Consider a long solid cylinder of radius \(r_{o}=4 \mathrm{~cm}\) and thermal
conductivity \(k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). Heat is
generated in the cylinder uniformly at a rate of $\dot{e}_{\mathrm{gen}}=35
\mathrm{~W} / \mathrm{cm}^{3}$. The side surface of the cylinder is maintained
at a constant temperature of \(T_{s}=80^{\circ} \mathrm{C}\). The variation of
temperature in the cylinder is given by
$$
T(r)=\frac{e_{\mathrm{gen}}
r_{o}^{2}}{k}\left[1-\left(\frac{r}{r_{o}}\right)^{2}\right]+T_{s}
$$
Based on this relation, determine \((a)\) if the heat conduction is steady or
transient, \((b)\) if it is one-, two-, or threedimensional, and \((c)\) the value
of heat flux on the side surface of the cylinder at \(r=r_{a r}\)