Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A solar heat flux \(\dot{q}_{s}\) is incident on a sidewalk whose thermal conductivity is \(k\), solar absorptivity is \(\alpha_{s^{+}}\)and convective heat transfer coefficient is \(h\). Taking the positive \(x\)-direction to be toward the sky and disregarding radiation exchange with the surrounding surfaces, the correct boundary condition for this sidewalk surface is (a) \(-k \frac{d T}{d x}=\alpha_{s} \dot{q}_{s}\) (b) \(-k \frac{d T}{d x}=h\left(T-T_{\infty}\right)\) (c) \(-k \frac{d T}{d x}=h\left(T-T_{o c}\right)-\alpha_{s} \dot{q}_{s}\) (d) \(h\left(T-T_{\infty}\right)=\alpha_{s} \dot{q}_{s}\) (e) None of them

Short Answer

Expert verified
Based on the step-by-step solution, the correct boundary condition for the surface of the sidewalk receiving solar heat flux is: (c) \(-k \frac{d T}{d x} = h\left(T-T_{\infty}\right) - \alpha_{s} \dot{q}_{s}\)

Step by step solution

01

1. Understand the boundary condition

The boundary condition will describe the heat balance on the sidewalk surface, which is the result of solar radiation absorption and convective heat loss.
02

2. Equation for absorbed solar radiation

The absorbed solar radiation per unit area of the sidewalk surface is given by: \(\alpha_{s^{+}} \cdot \dot{q}_{s}\)
03

3. Equation for convective heat transfer

The convective heat transfer per unit area between the sidewalk surface and ambient air is given by: \(h (T - T_\infty)\), where \(T\) is the temperature of the sidewalk surface and \(T_\infty\) is the ambient temperature.
04

4. Equation for conductive heat transfer

The conductive heat transfer is given by Fourier's law: \(q = -k \frac{d T}{d x}\), where \(-k \frac{d T}{d x}\) is the heat flux due to conduction.
05

5. Writing the boundary condition equation

At the surface of the sidewalk, the absorbed solar radiation and convective heat transfer must balance the conductive heat transfer. Therefore, the boundary condition equation is: $$-k \frac{d T}{d x} = \alpha_{s^{+}} \cdot \dot{q}_{s} - h (T - T_\infty)$$
06

6. Comparing the options and selecting the correct answer

Comparing our derived boundary condition with the given options, we find that the correct choice is: (c) \(-k \frac{d T}{d x} = h\left(T-T_{\infty}\right) - \alpha_{s} \dot{q}_{s}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider steady one-dimensional heat conduction in a plane wall in which the thermal conductivity varies linearly. The error involved in heat transfer calculations by assuming constant thermal conductivity at the average temperature is \((a)\) none, \((b)\) small, or \((c)\) significant.

A heating cable is embedded in a concrete slab for snow melting. The heating cable is heated electrically with joule heating to provide the concrete slab with a uniform heat of \(1200 \mathrm{~W} / \mathrm{m}^{2}\). The concrete has a thermal conductivity of \(1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). To minimize thermal stress in the concrete, the temperature difference between the heater surface \(\left(T_{1}\right)\) and the slab surface \(\left(T_{2}\right)\) should not exceed \(21^{\circ} \mathrm{C}\) (2015 ASHRAE Handbook-HVAC Applications, Chap. 51). Formulate the temperature profile in the concrete slab, and determine the thickness of the concrete slab \((L)\) so that \(T_{1}-\) \(T_{2} \leq 21^{\circ} \mathrm{C}\).

Consider a 20 -cm-thick concrete plane wall \((k=0.77\) $\mathrm{W} / \mathrm{m} \cdot \mathrm{K})\( subjected to convection on both sides with \)T_{\infty 1}=27^{\circ} \mathrm{C}\( and \)h_{1}=5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( on the inside and \)T_{\infty 22}=8^{\circ} \mathrm{C}$ and \(\mathrm{h}_{2}=12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the outside. Assuming constant thermal conductivity with no heat generation and negligible radiation, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, \((b)\) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the temperatures at the inner and outer surfaces of the wall.

Consider a steam pipe of length \(L\), inner radius \(r_{1}\), outer radius \(r_{2}\), and constant thermal conductivity \(k\). Steam flows inside the pipe at an average temperature of \(T_{i}\) with a convection heat transfer coefficient of \(h_{i}\). The outer surface of the pipe is exposed to convection to the surrounding air at a temperature of \(T_{0}\) with a heat transfer coefficient of \(h_{\sigma}\). Assuming steady one-dimensional heat conduction through the pipe, \((a)\) express the differential equation and the boundary conditions for heat conduction through the pipe material, (b) obtain a relation for the variation of temperature in the pipe material by solving the differential equation, and (c) obtain a relation for the temperature of the outer surface of the pipe.

Consider a long solid cylinder of radius \(r_{o}=4 \mathrm{~cm}\) and thermal conductivity \(k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). Heat is generated in the cylinder uniformly at a rate of $\dot{e}_{\mathrm{gen}}=35 \mathrm{~W} / \mathrm{cm}^{3}$. The side surface of the cylinder is maintained at a constant temperature of \(T_{s}=80^{\circ} \mathrm{C}\). The variation of temperature in the cylinder is given by $$ T(r)=\frac{e_{\mathrm{gen}} r_{o}^{2}}{k}\left[1-\left(\frac{r}{r_{o}}\right)^{2}\right]+T_{s} $$ Based on this relation, determine \((a)\) if the heat conduction is steady or transient, \((b)\) if it is one-, two-, or threedimensional, and \((c)\) the value of heat flux on the side surface of the cylinder at \(r=r_{a r}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free