Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The heat conduction equation in a medium is given in its simplest form as $$ \frac{1}{r} \frac{d}{d r}\left(r k \frac{d T}{d r}\right)+\hat{e}_{\mathrm{gen}}=0 $$ Select the wrong statement below. (a) The medium is of cylindrical shape. (b) The thermal conductivity of the medium is constant. (c) Heat transfer through the medium is steady. (d) There is heat generation within the medium. (e) Heat conduction through the medium is one-dimensional.

Short Answer

Expert verified
Question: Identify the incorrect statement in the given heat conduction equation in a medium: $$\frac{1}{r} \frac{d}{d r}\left(r k \frac{d T}{d r}\right)+\hat{e}_{\mathrm{gen}}=0$$ Answer: There is a mistake in the problem statement as all the given statements (a) to (e) are consistent with the heat conduction equation.

Step by step solution

01

(Understanding the heat conduction equation)

First, let's analyze the given heat conduction equation and understand each of the terms in it: $$ \frac{1}{r} \frac{d}{d r}\left(r k \frac{d T}{d r}\right)+\hat{e}_{\mathrm{gen}}=0 $$ In this equation, - \(r\) is the radial distance from the axis of the cylinder - \(k\) is the thermal conductivity - \(T\) is the temperature - \(\frac{dT}{dr}\) is the temperature gradient with respect to the radial distance \(r\) - \(\hat{e}_{\mathrm{gen}}\) is the heat generation rate per unit volume Now, let's examine each statement and determine if they are consistent with the given equation:
02

(a) The medium is of cylindrical shape.

Since the equation contains terms related to the radial distance \(r\), it suggests that the heat conduction is happening in a medium with a cylindrical shape.
03

(b) The thermal conductivity of the medium is constant.

The thermal conductivity \(k\) is not a function of \(r\) in the given equation, which implies that the thermal conductivity of the medium is constant.
04

(c) Heat transfer through the medium is steady.

The given equation does not have any terms related to time, which means that heat transfer through the medium is steady.
05

(d) There is heat generation within the medium.

The term \(\hat{e}_{\mathrm{gen}}\) in the equation represents heat generation rate per unit volume. Since the term is not equal to zero, there is heat generation within the medium.
06

(e) Heat conduction through the medium is one-dimensional.

The given heat conduction equation only has terms related to the radial distance r (with no terms representing the heat conduction in other directions). This means that heat conduction through the medium is one-dimensional. Based on our analysis, all the statements (a) to (e) are consistent with the heat conduction equation, implying they are true. However, the problem is to identify the wrong statement, which means there is a mistake in the problem statement provided.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a long solid cylinder of radius \(r_{o}=4 \mathrm{~cm}\) and thermal conductivity \(k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). Heat is generated in the cylinder uniformly at a rate of $\dot{e}_{\mathrm{gen}}=35 \mathrm{~W} / \mathrm{cm}^{3}$. The side surface of the cylinder is maintained at a constant temperature of \(T_{s}=80^{\circ} \mathrm{C}\). The variation of temperature in the cylinder is given by $$ T(r)=\frac{e_{\mathrm{gen}} r_{o}^{2}}{k}\left[1-\left(\frac{r}{r_{o}}\right)^{2}\right]+T_{s} $$ Based on this relation, determine \((a)\) if the heat conduction is steady or transient, \((b)\) if it is one-, two-, or threedimensional, and \((c)\) the value of heat flux on the side surface of the cylinder at \(r=r_{a r}\)

Consider a small hot metal object of mass \(m\) and specific heat \(c\) that is initially at a temperature of \(T_{i}\). Now the object is allowed to cool in an environment at \(T_{\infty}\) by convection with a heat transfer coefficient of \(h\). The temperature of the metal object is observed to vary uniformly with time during cooling. Writing an energy balance on the entire metal object, derive the differential equation that describes the variation of temperature of the ball with time, \(T(t)\). Assume constant thermal conductivity and no heat generation in the object. Do not solve.

Consider a solid cylindrical rod whose side surface is maintained at a constant temperature while the end surfaces are perfectly insulated. The thermal conductivity of the rod material is constant, and there is no heat generation. It is claimed that the temperature in the radial direction within the rod will not vary during steady heat conduction. Do you agree with this claim? Why?

A series of ASME SA-193 carbon steel bolts are bolted onto the upper surface of a metal plate. The metal plate has a thickness of \(3 \mathrm{~cm}\), and its thermal conductivity is \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The bottom surface of the plate is subjected to a uniform heat flux of $5 \mathrm{~kW} / \mathrm{m}^{2}$. The upper surface of the plate is exposed to ambient air with a temperature of \(30^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of \(10 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HF-300) limits the maximum allowable use temperature to \(260^{\circ} \mathrm{C}\) for the SA-193 bolts. Formulate the variation of temperature in the metal plate, and determine the temperatures at \(x=0,1.5\), and \(3.0 \mathrm{~cm}\). Would the SA-193 bolts comply with the ASME code?

A solar heat flux \(\dot{q}_{s}\) is incident on a sidewalk whose thermal conductivity is \(k\), solar absorptivity is \(\alpha_{s^{+}}\)and convective heat transfer coefficient is \(h\). Taking the positive \(x\)-direction to be toward the sky and disregarding radiation exchange with the surrounding surfaces, the correct boundary condition for this sidewalk surface is (a) \(-k \frac{d T}{d x}=\alpha_{s} \dot{q}_{s}\) (b) \(-k \frac{d T}{d x}=h\left(T-T_{\infty}\right)\) (c) \(-k \frac{d T}{d x}=h\left(T-T_{o c}\right)-\alpha_{s} \dot{q}_{s}\) (d) \(h\left(T-T_{\infty}\right)=\alpha_{s} \dot{q}_{s}\) (e) None of them

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free