Chapter 2: Problem 162
A metal spherical tank is filled with chemicals undergoing an exothermic reaction. The reaction provides a uniform heat flux on the inner surface of the tank. The tank has an inner diameter of \(5 \mathrm{~m}\), and its wall thickness is \(10 \mathrm{~mm}\). The tank wall has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=9.1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \beta=0.0018 \mathrm{~K}^{-1}\(, and \)T$ is in \(\mathrm{K}\). The area surrounding the tank has an ambient temperature of \(15^{\circ} \mathrm{C}\), the tank's outer surface experiences convection heat transfer with a coefficient of \(80 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\). Determine the heat flux on the tank's inner surface if the inner surface temperature is \(120^{\circ} \mathrm{C}\).