Chapter 2: Problem 161
A pipe is used for transporting boiling water in which the inner surface is at \(100^{\circ} \mathrm{C}\). The pipe is situated where the ambient temperature is \(20^{\circ} \mathrm{C}\) and the convection heat transfer coefficient is $50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. The pipe has a wall thickness of \(3 \mathrm{~mm}\) and an inner diameter of \(25 \mathrm{~mm}\), and it has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=1.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \beta=0.003 \mathrm{~K}^{-1}\(, and \)T\( is in \)\mathrm{K}$. Determine the outer surface temperature of the pipe.