Chapter 2: Problem 160
Consider a cylindrical shell of length \(L\), inner radius \(r_{1}\), and outer radius \(r_{2}\) whose thermal conductivity varies in a specified temperature range as \(k(T)=k_{0}\left(1+\beta T^{2}\right)\) where \(k_{0}\) and \(\beta\) are two specified constants. The inner surface of the shell is maintained at a constant temperature of \(T_{1}\) while the outer surface is maintained at \(T_{2}\). Assuming steady onedimensional heat transfer, obtain a relation for the heat transfer rate through the shell.