Chapter 2: Problem 149
A \(1000-W\) iron is left on the ironing board with its base exposed to ambient air at \(26^{\circ} \mathrm{C}\). The base plate of the iron has a thickness of \(L=0.5 \mathrm{~cm}\), base area of \(A=150 \mathrm{~cm}^{2}\), and thermal conductivity of \(k=18 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. The outer surface of the base plate, whose emissivity is \(\varepsilon=0.7\), loses heat by convection to ambient air with an average heat transfer coefficient of $h=30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$ as well as by radiation to the surrounding surfaces at an average temperature of \(T_{\text {sarr }}=295 \mathrm{~K}\). Disregarding any heat loss through the upper part of the iron, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, \((b)\) obtain a relation for the temperature of the outer surface of the plate by solving the differential equation, and (c) evaluate the outer surface temperature.