Chapter 2: Problem 138
How do you recognize a linear homogeneous differential equation? Give an example and explain why it is linear and homogeneous.
Chapter 2: Problem 138
How do you recognize a linear homogeneous differential equation? Give an example and explain why it is linear and homogeneous.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider steady one-dimensional heat conduction in a plane wall, a long cylinder, and a sphere with constant thermal conductivity and no heat generation. Will the temperature in any of these media vary linearly? Explain.
The heat conduction equation in a medium is given in its simplest form as $$ \frac{1}{r} \frac{d}{d r}\left(r k \frac{d T}{d r}\right)+\hat{e}_{\mathrm{gen}}=0 $$ Select the wrong statement below. (a) The medium is of cylindrical shape. (b) The thermal conductivity of the medium is constant. (c) Heat transfer through the medium is steady. (d) There is heat generation within the medium. (e) Heat conduction through the medium is one-dimensional.
The variation of temperature in a plane wall is determined to be $T(x)=65 x+25\( where \)x\( is in \)\mathrm{m}\( and \)T\( is in \){ }^{\circ} \mathrm{C}$. If the temperature at one surface is \(38^{\circ} \mathrm{C}\), the thickness of the wall is (a) \(2 \mathrm{~m}\) (b) \(0.4 \mathrm{~m}\) (c) \(0.2 \mathrm{~m}\) (d) \(0.1 \mathrm{~m}\) (e) \(0.05 \mathrm{~m}\)
Heat is generated in an 8-cm-diameter spherical radioactive material whose thermal conductivity is \(25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) uniformly at a rate of \(15 \mathrm{~W} / \mathrm{cm}^{3}\). If the surface temperature of the material is measured to be \(120^{\circ} \mathrm{C}\), the center temperature of the material during steady operation is (a) \(160^{\circ} \mathrm{C}\) (b) \(280^{\circ} \mathrm{C}\) (c) \(212^{\circ} \mathrm{C}\) (d) \(360^{\circ} \mathrm{C}\) (e) \(600^{\circ} \mathrm{C}\)
Can a differential equation involve more than one independent variable? Can it involve more than one dependent variable? Give examples.
What do you think about this solution?
We value your feedback to improve our textbook solutions.