Chapter 2: Problem 137
How do you distinguish a linear differential equation from a nonlinear one?
Chapter 2: Problem 137
How do you distinguish a linear differential equation from a nonlinear one?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen the thermal conductivity of a medium varies linearly with temperature, is the average thermal conductivity always equivalent to the conductivity value at the average temperature?
A flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has an emissivity and an absorptivity of \(0.9\). The top surface \((x=0)\) temperature of the absorber is \(T_{0}=35^{\circ} \mathrm{C}\), and solar radiation is incident on the absorber at $500 \mathrm{~W} / \mathrm{m}^{2}\( with a surrounding temperature of \)0^{\circ} \mathrm{C}$. The convection heat transfer coefficient at the absorber surface is $5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, while the ambient temperature is \(25^{\circ} \mathrm{C}\). Show that the variation of temperature in the absorber plate can be expressed as $T(x)=-\left(\dot{q}_{0} / k\right) x+T_{0}\(, and determine net heat flux \)\dot{q}_{0}$ absorbed by the solar collector.
A solar heat flux \(\dot{q}_{s}\) is incident on a sidewalk whose thermal conductivity is \(k\), solar absorptivity is \(\alpha_{s^{+}}\)and convective heat transfer coefficient is \(h\). Taking the positive \(x\)-direction to be toward the sky and disregarding radiation exchange with the surrounding surfaces, the correct boundary condition for this sidewalk surface is (a) \(-k \frac{d T}{d x}=\alpha_{s} \dot{q}_{s}\) (b) \(-k \frac{d T}{d x}=h\left(T-T_{\infty}\right)\) (c) \(-k \frac{d T}{d x}=h\left(T-T_{o c}\right)-\alpha_{s} \dot{q}_{s}\) (d) \(h\left(T-T_{\infty}\right)=\alpha_{s} \dot{q}_{s}\) (e) None of them
Write an essay on heat generation in nuclear fuel rods. Obtain information on the ranges of heat generation, the variation of heat generation with position in the rods, and the absorption of emitted radiation by the cooling medium.
What is the difference between the degree and the order of a derivative?
What do you think about this solution?
We value your feedback to improve our textbook solutions.