Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider heat loss from a 200-L cylindrical hot water tank in a house to the surrounding medium. Would you consider this to be a steady or a transient heat transfer problem? Also, would you consider this heat transfer problem to be one-, two-, or three-dimensional? Explain.

Short Answer

Expert verified
Answer: The heat transfer process in the hot water tank is transient and primarily one-dimensional, with the potential to become two-dimensional if the axial heat transfer turns out to be significant.

Step by step solution

01

Determine if the heat transfer is steady or transient

A steady heat transfer problem means that the temperature distribution does not change with time. A transient heat transfer problem means that the temperature distribution changes over time. As the hot water tank loses heat to the surrounding medium over time, the temperature distribution will change until the tank's water temperature becomes equal to the ambient temperature. Hence, this is a transient heat transfer problem.
02

Determine if the heat transfer is one-, two-, or three-dimensional

A one-dimensional heat transfer problem involves temperature distribution in only one direction. A two-dimensional heat transfer problem involves temperature distribution in two directions. A three-dimensional heat transfer problem involves temperature distribution in three directions. For the given 200-L cylindrical hot water tank, the temperature distribution will vary along the cylinder's radial direction (from the tank's outer surface inward) and in the axial direction (along the height of the cylinder). In most practical applications, the heat transfer in the axial direction (along the height) could be less significant compared to the radial heat transfer, making it a primarily one-dimensional heat transfer problem. However, depending on the geometry of the tank and the accuracy required, the heat transfer in the axial direction might also need to be considered. In that case, we would have a two-dimensional heat transfer problem. In summary, we would consider this heat transfer problem to be transient and primarily one-dimensional with the potential to become two-dimensional if the axial heat transfer turns out to be significant.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider steady one-dimensional heat conduction through a plane wall, a cylindrical shell, and a spherical shell of uniform thickness with constant thermophysical properties and no thermal energy generation. The geometry in which the variation of temperature in the direction of heat transfer will be linear is (a) plane wall (b) cylindrical shell (c) spherical shell (d) all of them (e) none of them

Consider a short cylinder of radius \(r_{o}\) and height \(H\) in which heat is generated at a constant rate of \(\dot{e}_{\mathrm{gen}}\). Heat is lost from the cylindrical surface at \(r=r_{o}\) by convection to the surrounding medium at temperature \(T_{\infty}\) with a heat transfer coefficient of \(h\). The bottom surface of the cylinder at \(z=0\) is insulated, while the top surface at \(z=H\) is subjected to uniform heat flux \(\dot{q}_{H}\). Assuming constant thermal conductivity and steady two-dimensional heat transfer, express the mathematical formulation (the differential equation and the boundary conditions) of this heat conduction problem. Do not solve.

A metal plate with a thickness of \(5 \mathrm{~cm}\) and a thermal conductivity of \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) has its bottom surface subjected to a uniform heat flux of \(2250 \mathrm{~W} / \mathrm{m}^{2}\). The upper surface of the plate is exposed to ambient air with a temperature of \(30^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2}$. K. A series of ASME SA-193 carbon steel bolts are bolted onto the upper surface of a metal plate. The ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HF-300) limits the maximum allowable use temperature to \(260^{\circ} \mathrm{C}\) for the \(\mathrm{SA}-193\) bolts. Formulate the temperature profile in the metal plate, and determine the location in the plate where the temperature begins to exceed $260^{\circ} \mathrm{C}\(. If the thread length of the bolts is \)1 \mathrm{~cm}$, would the \(\mathrm{SA}-193\) bolts comply with the ASME code?

A spherical vessel is filled with chemicals undergoing an exothermic reaction. The reaction provides a uniform heat flux on the inner surface of the vessel. The inner diameter of the vessel is \(5 \mathrm{~m}\) and its inner surface temperature is at \(120^{\circ} \mathrm{C}\). The wall of the vessel has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=1.01 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \beta=0.0018 \mathrm{~K}^{-1}\(, and \)T\( is in \)\mathrm{K}$. The vessel is situated in a surrounding with an ambient temperature of \(15^{\circ} \mathrm{C}\), and the vessel's outer surface experiences convection heat transfer with a coefficient of \(80 \mathrm{~W} / \mathrm{m}^{2}\). K. To prevent thermal burns to workers who touch the vessel, the outer surface temperature of the vessel should be kept below \(50^{\circ} \mathrm{C}\). Determine the minimum wall thickness of the vessel so that the outer surface temperature is \(50^{\circ} \mathrm{C}\) or lower.

How do you recognize a linear homogeneous differential equation? Give an example and explain why it is linear and homogeneous.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free