Chapter 2: Problem 117
Consider a plane wall of thickness \(L\) whose thermal conductivity varies in a specified temperature range as \(k(T)=k_{0}\left(1+\beta T^{2}\right)\) where \(k_{0}\) and \(\beta\) are two specified constants.
Chapter 2: Problem 117
Consider a plane wall of thickness \(L\) whose thermal conductivity varies in a specified temperature range as \(k(T)=k_{0}\left(1+\beta T^{2}\right)\) where \(k_{0}\) and \(\beta\) are two specified constants.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider steady one-dimensional heat conduction in a plane wall, a long cylinder, and a sphere with constant thermal conductivity and no heat generation. Will the temperature in any of these media vary linearly? Explain.
A long electrical resistance wire of radius $k_{\text {wirc }}=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of $1.2 \mathrm{~W} / \mathrm{cm}^{3}$. The wire is covered with polyethylene insulation with a thickness of \(0.5 \mathrm{~cm}\) and thermal conductivity of $k_{\text {ins }}=0.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer surface of the insulation is subjected to convection and radiation with the surroundings at \(20^{\circ} \mathrm{C}\). The combined convection and radiation heat transfer coefficients is \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Formulate the temperature profiles for the wire and the polyethylene insulation. Use the temperature profiles to determine the temperature at the interface of the wire and the insulation and the temperature at the center of the wire. The ASTM D1351 standard specifies that thermoplastic polyethylene insulation is suitable for use on electrical wire with operation at temperatures up to \(75^{\circ} \mathrm{C}\). Under these conditions, does the polyethylene insulation for the wire meet the ASTM D1351 standard?
Consider a function \(f(x)\) and its derivative \(d f / d x\). Does this derivative have to be a function of \(x\) ?
What is the difference between an ordinary differential equation and a partial differential equation?
Consider a solid cylindrical rod whose side surface is maintained at a constant temperature while the end surfaces are perfectly insulated. The thermal conductivity of the rod material is constant, and there is no heat generation. It is claimed that the temperature in the radial direction within the rod will not vary during steady heat conduction. Do you agree with this claim? Why?
What do you think about this solution?
We value your feedback to improve our textbook solutions.