Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider steady one-dimensional heat conduction in a plane wall, a long cylinder, and a sphere with constant thermal conductivity and no heat generation. Will the temperature in any of these media vary linearly? Explain.

Short Answer

Expert verified
Answer: The temperature varies linearly for a plane wall, but not for a long cylinder or a sphere in the given conditions.

Step by step solution

01

Plane wall

For a plane wall, the heat conduction equation is given by Fourier's Law of heat conduction: q = -k * du/dx where q is the heat flux, k is the constant thermal conductivity, and du/dx represents the temperature gradient along the x-axis. Since we have no heat generation and constant thermal conductivity, this equation simplifies to: q = -k * du/dx = constant To find the temperature distribution, we integrate the equation with respect to x: u(x) = (-q/k) * x + C where C is a constant of integration. Thus, the temperature distribution in a plane wall is a linear function of the spatial coordinate x.
02

Long cylinder

In a long cylinder, heat conduction is described by the cylindrical heat conduction equation: q = -k * du/dr where q is the heat flux, k is the constant thermal conductivity, and du/dr represents the temperature gradient along the radial coordinate r. Dividing by r, we have: q / r = -k * du/dr q / k = (-du/dr)*r Integrating with respect to r, we find: u(r) = -[(q / k) * ln(r)] + C Since the temperature distribution in a long cylinder depends on the natural logarithm of the radial distance r, the temperature does *not* vary linearly in this case.
03

Sphere

For a sphere, heat conduction is described by the spherical heat conduction equation: q = -k * du/dr where q is the heat flux, k is the constant thermal conductivity, and du/dr represents the temperature gradient along the radial coordinate r. Now we have: qr^2 = -k * (dr) Integrating with respect to r, we find: u(r) = (q/3k)(R^3 - r^3) + C where R is the radius of the sphere. As the temperature distribution in a sphere depends on the cube of the radial distance r, the temperature does *not* vary linearly in this case either. In summary, for steady one-dimensional heat conduction with constant thermal conductivity and no heat generation, the temperature varies linearly for a plane wall but not for a long cylinder or a sphere.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long electrical resistance wire of radius $k_{\text {wirc }}=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of $1.2 \mathrm{~W} / \mathrm{cm}^{3}$. The wire is covered with polyethylene insulation with a thickness of \(0.5 \mathrm{~cm}\) and thermal conductivity of $k_{\text {ins }}=0.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer surface of the insulation is subjected to convection and radiation with the surroundings at \(20^{\circ} \mathrm{C}\). The combined convection and radiation heat transfer coefficients is \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Formulate the temperature profiles for the wire and the polyethylene insulation. Use the temperature profiles to determine the temperature at the interface of the wire and the insulation and the temperature at the center of the wire. The ASTM D1351 standard specifies that thermoplastic polyethylene insulation is suitable for use on electrical wire with operation at temperatures up to \(75^{\circ} \mathrm{C}\). Under these conditions, does the polyethylene insulation for the wire meet the ASTM D1351 standard?

Liquid water flows in a tube with the inner surface lined with polyvinylidene chloride (PVDC). The inner diameter of the tube is \(24 \mathrm{~mm}\), and its wall thickness is \(5 \mathrm{~mm}\). The thermal conductivity of the tube wall is \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The water flowing in the tube has a temperature of \(20^{\circ} \mathrm{C}\), and the convection heat transfer coefficient with the inner tube surface is $50 \mathrm{~W} / \mathrm{m}^{2}\(. \)\mathrm{K}$. The outer surface of the tube is subjected to a uniform heat flux of \(2300 \mathrm{~W} / \mathrm{m}^{2}\). According to the ASME Code for Process Piping (ASME B31.3-2014, \(\mathrm{A} .323\) ), the recommended maximum temperature for PVDC lining is \(79^{\circ} \mathrm{C}\). Formulate the temperature profile in the tube wall. Use the temperature profile to determine if the tube inner surface is in compliance with the ASME Code for Process Piping.

A \(1000-W\) iron is left on the ironing board with its base exposed to ambient air at \(26^{\circ} \mathrm{C}\). The base plate of the iron has a thickness of \(L=0.5 \mathrm{~cm}\), base area of \(A=150 \mathrm{~cm}^{2}\), and thermal conductivity of \(k=18 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. The outer surface of the base plate, whose emissivity is \(\varepsilon=0.7\), loses heat by convection to ambient air with an average heat transfer coefficient of $h=30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$ as well as by radiation to the surrounding surfaces at an average temperature of \(T_{\text {sarr }}=295 \mathrm{~K}\). Disregarding any heat loss through the upper part of the iron, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, \((b)\) obtain a relation for the temperature of the outer surface of the plate by solving the differential equation, and (c) evaluate the outer surface temperature.

Heat is generated in an 8-cm-diameter spherical radioactive material whose thermal conductivity is \(25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) uniformly at a rate of \(15 \mathrm{~W} / \mathrm{cm}^{3}\). If the surface temperature of the material is measured to be \(120^{\circ} \mathrm{C}\), the center temperature of the material during steady operation is (a) \(160^{\circ} \mathrm{C}\) (b) \(280^{\circ} \mathrm{C}\) (c) \(212^{\circ} \mathrm{C}\) (d) \(360^{\circ} \mathrm{C}\) (e) \(600^{\circ} \mathrm{C}\)

Consider a 20-cm-thick large concrete plane wall $(k=0.77 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ subjected to convection on both sides with \(T_{\infty 1}=22^{\circ} \mathrm{C}\) and $h_{1}=8 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( on the inside and \)T_{\infty 22}=8^{\circ} \mathrm{C}$ and \(h_{2}=12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the outside. Assuming constant thermal conductivity with no heat generation and negligible radiation, \((a)\) express the differential equations and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the temperatures at the inner and outer surfaces of the wall.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free