Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a hot dog being cooked in boiling water in a pan. Would you model the heat transfer to the hot dog as one-, two-, or three-dimensional? Would the heat transfer be steady or transient? Also, which coordinate system would you use to solve this problem, and where would you place the origin? Explain.

Short Answer

Expert verified
Answer: The heat transfer in a hot dog being cooked in boiling water can be modeled as one-dimensional and transient in the radial direction. The most appropriate coordinate system to use is the cylindrical coordinate system with the origin placed at the center of the hot dog.

Step by step solution

01

One-, Two-, or Three-Dimensional Heat Transfer

Firstly, we need to determine whether the heat transfer in the hot dog is one-, two-, or three-dimensional. Since hot dogs are generally cylindrical in shape, we can consider that heat transfers in the radial (r) and longitudinal (z) directions. As the boiling water temperature is constant and uniformly distributed around the hot dog, we can assume that the temperature will be the same along the entire length of the hot dog. Hence, we can model the heat transfer as one-dimensional in the radial direction (r).
02

Steady or Transient Heat Transfer

Next, we need to determine whether the heat transfer is steady or transient. A process is said to be steady if the temperature does not change with time at any point in the medium. While boiling the hot dog, the temperature will vary over time from the initial temperature until it reaches a uniform temperature close to the boiling water temperature. Therefore, we classify the heat transfer as transient.
03

Coordinate System and Placement of the Origin

Since we are dealing with a one-dimensional problem, the most appropriate coordinate system would be the cylindrical coordinate system. In this case, the origin (r = 0) can be placed at the center of the hot dog (cylinder axis), and the radial direction (r) will extend outward from the center to the outer surface of the hot dog. Thus, the heat transfer problem gets simplified to only considering the radial heat transfer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A spherical tank is filled with ice slurry, where its inner surface is at \(0^{\circ} \mathrm{C}\). The tank has an inner diameter of \(9 \mathrm{~m}\), and its wall thickness is \(20 \mathrm{~mm}\). The tank wall is made of a material with a thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where $k_{0}=0.33 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \beta=0.0025 \mathrm{~K}^{-1}\(, and \)T\( is in \)\mathrm{K}$. The temperature outside the tank is \(35^{\circ} \mathrm{C}\), and the convection heat transfer coefficient is \(70 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Solar radiation is incident on the tank's outer surface at a rate of $150 \mathrm{~W} / \mathrm{m}^{2}$, where the emissivity and solar absorptivity of the outer surface are \(0.75\). Determine the outer surface temperature of the tank.

Consider a plane wall of thickness \(L\) whose thermal conductivity varies in a specified temperature range as \(k(T)=k_{0}\left(1+\beta T^{2}\right)\) where \(k_{0}\) and \(\beta\) are two specified constants.

Consider a third-order linear and homogeneous differential equation. How many arbitrary constants will its general solution involve?

A spherical container with an inner radius \(r_{1}=1 \mathrm{~m}\) and an outer radius \(r_{2}=1.05 \mathrm{~m}\) has its inner surface subjected to a uniform heat flux of \(\dot{q}_{1}=7 \mathrm{~kW} / \mathrm{m}^{2}\). The outer surface of the container has a temperature \(T_{2}=25^{\circ} \mathrm{C}\), and the container wall thermal conductivity is $k=1.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Show that the variation of temperature in the container wall can be expressed as $T(r)=\left(\dot{q}_{1} r_{1}^{2} / k\right)\left(1 / r-1 / r_{2}\right)+T_{2}$ and determine the temperature of the inner surface of the container at \(r=r_{1}\).

The variation of temperature in a plane wall is determined to be $T(x)=110 x-48 x\( where \)x\( is in \)\mathrm{m}\( and \)T\( is in \){ }^{\circ} \mathrm{C}$. If the thickness of the wall is \(0.75 \mathrm{~m}\), the temperature difference between the inner and outer surfaces of the wall is (a) \(110^{\circ} \mathrm{C}\) (b) \(74^{\circ} \mathrm{C}\) (c) \(55^{\circ} \mathrm{C}\) (d) \(36^{\circ} \mathrm{C}\) (e) \(18^{\circ} \mathrm{C}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free