Chapter 2: Problem 109
Is the thermal conductivity of a medium, in general, constant or does it vary with temperature?
Chapter 2: Problem 109
Is the thermal conductivity of a medium, in general, constant or does it vary with temperature?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider steady one-dimensional heat conduction in a plane wall, a long cylinder, and a sphere with constant thermal conductivity and no heat generation. Will the temperature in any of these media vary linearly? Explain.
Consider a small hot metal object of mass \(m\) and specific heat \(c\) that is initially at a temperature of \(T_{i}\). Now the object is allowed to cool in an environment at \(T_{\infty}\) by convection with a heat transfer coefficient of \(h\). The temperature of the metal object is observed to vary uniformly with time during cooling. Writing an energy balance on the entire metal object, derive the differential equation that describes the variation of temperature of the ball with time, \(T(t)\). Assume constant thermal conductivity and no heat generation in the object. Do not solve.
A spherical communication satellite with a diameter of \(2.5 \mathrm{~m}\) is orbiting the earth. The outer surface of the satellite in space has an emissivity of \(0.75\) and a solar absorptivity of \(0.10\), while solar radiation is incident on the spacecraft at a rate of $1000 \mathrm{~W} / \mathrm{m}^{2}$. If the satellite is made of material with an average thermal conductivity of \(5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) and the midpoint temperature is \(0^{\circ} \mathrm{C}\), determine the heat generation rate and the surface temperature of the satellite.
A cylindrical fuel rod $(k=30 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}) 2 \mathrm{~cm}$ in diameter is encased in a concentric tube and cooled by water. The fuel rod generates heat uniformly at a rate of $100 \mathrm{MW} / \mathrm{m}^{3}$, and the average temperature of the cooling water is \(75^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of $2500 \mathrm{~W} / \mathrm{m}^{2}\(. \)\mathrm{K}$. The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below \(200^{\circ} \mathrm{C}\) to prevent the cooling water from reaching the critical heat flux (CHF). The critical heat flux is a thermal limit at which a boiling crisis can occur that causes overheating on the fuel rod surface and leads to damage. Determine the variation of temperature in the fuel rod and the temperature of the fuel rod surface. Is the surface of the fuel rod adequately cooled?
What is the geometrical interpretation of a derivative? What is the difference between partial derivatives and ordinary derivatives?
What do you think about this solution?
We value your feedback to improve our textbook solutions.