Chapter 2: Problem 105
A long electrical resistance wire of radius $k_{\text {wirc }}=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of $1.2 \mathrm{~W} / \mathrm{cm}^{3}$. The wire is covered with polyethylene insulation with a thickness of \(0.5 \mathrm{~cm}\) and thermal conductivity of $k_{\text {ins }}=0.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The outer surface of the insulation is subjected to convection and radiation with the surroundings at \(20^{\circ} \mathrm{C}\). The combined convection and radiation heat transfer coefficients is \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Formulate the temperature profiles for the wire and the polyethylene insulation. Use the temperature profiles to determine the temperature at the interface of the wire and the insulation and the temperature at the center of the wire. The ASTM D1351 standard specifies that thermoplastic polyethylene insulation is suitable for use on electrical wire with operation at temperatures up to \(75^{\circ} \mathrm{C}\). Under these conditions, does the polyethylene insulation for the wire meet the ASTM D1351 standard?