Chapter 2: Problem 1
How does transient heat transfer differ from steady heat transfer? How does one-dimensional heat transfer differ from two-dimensional heat transfer?
Chapter 2: Problem 1
How does transient heat transfer differ from steady heat transfer? How does one-dimensional heat transfer differ from two-dimensional heat transfer?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a small hot metal object of mass \(m\) and specific heat \(c\) that is initially at a temperature of \(T_{i}\). Now the object is allowed to cool in an environment at \(T_{\infty}\) by convection with a heat transfer coefficient of \(h\). The temperature of the metal object is observed to vary uniformly with time during cooling. Writing an energy balance on the entire metal object, derive the differential equation that describes the variation of temperature of the ball with time, \(T(t)\). Assume constant thermal conductivity and no heat generation in the object. Do not solve.
Consider a solid cylindrical rod whose side surface is maintained at a constant temperature while the end surfaces are perfectly insulated. The thermal conductivity of the rod material is constant, and there is no heat generation. It is claimed that the temperature in the radial direction within the rod will not vary during steady heat conduction. Do you agree with this claim? Why?
Consider a large plate of thickness \(L\) and thermal conductivity \(k\) in which heat is generated uniformly at a rate of \(\dot{e}_{\text {gen }}\). One side of the plate is insulated, while the other side is exposed to an environment at \(T_{\infty}\) with a heat transfer coefficient of \(h\). (a) Express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, (b) determine the variation of temperature in the plate, and (c) obtain relations for the temperatures on both surfaces and the maximum temperature rise in the plate in terms of given parameters.
A metal plate with a thickness of \(5 \mathrm{~cm}\) and a thermal conductivity of \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) has its bottom surface subjected to a uniform heat flux of \(2250 \mathrm{~W} / \mathrm{m}^{2}\). The upper surface of the plate is exposed to ambient air with a temperature of \(30^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2}$. K. A series of ASME SA-193 carbon steel bolts are bolted onto the upper surface of a metal plate. The ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HF-300) limits the maximum allowable use temperature to \(260^{\circ} \mathrm{C}\) for the \(\mathrm{SA}-193\) bolts. Formulate the temperature profile in the metal plate, and determine the location in the plate where the temperature begins to exceed $260^{\circ} \mathrm{C}\(. If the thread length of the bolts is \)1 \mathrm{~cm}$, would the \(\mathrm{SA}-193\) bolts comply with the ASME code?
A large plane wall, with a thickness \(L\) and a thermal conductivity \(k\), has its left surface \((x=0)\) exposed to a uniform heat flux \(\dot{q}_{0}\). On the right surface \((x=L)\), convection and radiation heat transfer occur in a surrounding temperature of \(T_{\infty}\). The emissivity and the convection heat transfer coefficient on the right surface are \(\varepsilon\) and \(h\), respectively. Express the boundary conditions and the differential equation of this heat conduction problem during steady operation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.