Chapter 14: Problem 86
Define the penetration depth for mass transfer, and explain how it can be determined at a specified time when the diffusion coefficient is known.
Chapter 14: Problem 86
Define the penetration depth for mass transfer, and explain how it can be determined at a specified time when the diffusion coefficient is known.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat are the adverse effects of excess moisture on the wood and metal components of a house and the paint on the walls?
Under what conditions will the normalized velocity, thermal, and concentration boundary layers coincide during flow over a flat plate?
Heat convection is expressed by Newton's law of cooling as $\dot{Q}=h A_{s}\left(T_{s}-T_{\infty}\right)$. Express mass convection in an analogous manner on a mass basis, and identify all the quantities in the expression and state their units.
Does a mass transfer process have to involve heat transfer? Describe a process that involves both heat and mass transfer.
A sphere of ice, \(5 \mathrm{~cm}\) in diameter, is exposed to $65 \mathrm{~km} / \mathrm{h}$ wind with 15 percent relative humidity. Both the ice sphere and air are at \(-1^{\circ} \mathrm{C}\) and \(90 \mathrm{kPa}\). Predict the rate of evaporation of the ice in \(\mathrm{g} / \mathrm{h}\) by use of the following correlation for single spheres: $\mathrm{Sh}=\left[4.0+1.21(\mathrm{ReSc})^{2 / 3}\right]^{0.5}\(. Data at \)-1^{\circ} \mathrm{C}\( and \)90 \mathrm{kPa}: D_{\text {ais } \mathrm{H}, \mathrm{O}}=2.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}^{3}\(, kinematic viscosity (air) \)=1.32 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\(, vapor pressure \)\left(\mathrm{H}_{2} \mathrm{O}\right)=0.56 \mathrm{kPa}\( and density (ice) \)=915 \mathrm{~kg} / \mathrm{m}^{3}$.
What do you think about this solution?
We value your feedback to improve our textbook solutions.