Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In transient mass diffusion analysis, can we treat the diffusion of a solid into another solid of finite thickness (such as the diffusion of carbon into an ordinary steel component) as a diffusion process in a semi-infinite medium? Explain.

Short Answer

Expert verified
Answer: Treating the diffusion of a solid into another solid of finite thickness as a diffusion process in a semi-infinite medium can provide an approximate solution. However, the actual diffusion process may be more complicated due to the finite thickness of the solid and the multi-directional nature of solid diffusion. A more detailed analysis, considering the boundary conditions and accurate diffusion modeling, would provide a better representation of the actual diffusion process.

Step by step solution

01

Concept of a Semi-Infinite Medium

In mass diffusion analysis, a semi-infinite medium refers to a material with an infinite extent in one direction. In other words, the medium has no boundaries in that particular direction. The concept simplifies the mathematical formulation and boundary conditions for diffusion problems by assuming that the diffusion process occurs in only one direction, and there are no barriers or boundaries that affect the process.
02

Diffusion of a Solid into Another Solid of Finite Thickness

In the case of the diffusion of carbon into an ordinary steel component, we are dealing with a solid system of finite thickness. The steel component has definite boundaries, and the diffusion of carbon can be affected by these boundaries. Moreover, the carbon atoms diffuse into the steel lattice by random walk, which involves multiple direction changes. Therefore, the diffusion process may not follow a clear single-direction path as in the case of semi-infinite media.
03

Comparison with Semi-Infinite Medium Diffusion

Treating the diffusion of a solid, such as carbon, into another solid with finite thickness, such as an ordinary steel component, as a semi-infinite medium diffusion assumes that the carbon atoms would only diffuse in one direction, with no boundaries to affect the process. However, due to the finite thickness of the steel component and the complex path followed by solid diffusion, this assumption is not entirely accurate.
04

Conclusion

In transient mass diffusion analysis, treating the diffusion of a solid into another solid of finite thickness as a diffusion process in a semi-infinite medium can provide an approximate solution. However, the actual diffusion process may be more complicated due to the finite thickness of the solid and the multi-directional nature of solid diffusion. A more detailed analysis, considering the boundary conditions and accurate diffusion modeling, would provide a better representation of the actual diffusion process.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A soaked sponge is experiencing dry air flowing over its surface. The air is at 1 atm and zero relative humidity. Determine the difference in the air temperature and the surface temperature of the sponge, \(T_{\infty}-T_{s}\), when steady-state conditions are reached, if the sponge is soaked with \((a)\) water, \(D_{A B}=2.42 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\), and \((b)\) ammonia, \(D_{A B}=2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\). Evaluate the properties of air, water, and ammonia at $20^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}\(, and \)-40^{\circ} \mathrm{C}$, respectively.

A sphere of ice, \(5 \mathrm{~cm}\) in diameter, is exposed to $65 \mathrm{~km} / \mathrm{h}$ wind with 15 percent relative humidity. Both the ice sphere and air are at \(-1^{\circ} \mathrm{C}\) and \(90 \mathrm{kPa}\). Predict the rate of evaporation of the ice in \(\mathrm{g} / \mathrm{h}\) by use of the following correlation for single spheres: $\mathrm{Sh}=\left[4.0+1.21(\mathrm{ReSc})^{2 / 3}\right]^{0.5}\(. Data at \)-1^{\circ} \mathrm{C}\( and \)90 \mathrm{kPa}: D_{\text {ais } \mathrm{H}, \mathrm{O}}=2.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}^{3}\(, kinematic viscosity (air) \)=1.32 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\(, vapor pressure \)\left(\mathrm{H}_{2} \mathrm{O}\right)=0.56 \mathrm{kPa}\( and density (ice) \)=915 \mathrm{~kg} / \mathrm{m}^{3}$.

A 1-in-diameter Stefan tube is used to measure the binary diffusion coefficient of water vapor in air at \(80^{\circ} \mathrm{F}\) and \(13.8\) psia. The tube is partially filled with water with a distance from the water surface to the open end of the tube of \(10 \mathrm{in}\). Dry air is blown over the open end of the tube so that water vapor rising to the top is removed immediately and the concentration of vapor at the top of the tube is zero. During 10 days of continuous operation at constant pressure and temperature, the amount of water that has evaporated is measured to be $0.0025 \mathrm{lbm}$. Determine the diffusion coefficient of water vapor in air at \(80^{\circ} \mathrm{F}\) and \(13.8\) psia.

Benzene-free air at \(25^{\circ} \mathrm{C}\) and \(101.3 \mathrm{kPa}\) enters a \(5-\mathrm{cm}\)-diameter tube at an average velocity of $5 \mathrm{~m} / \mathrm{s}$. The inner surface of the 6-m-long tube is coated with a thin film of pure benzene at \(25^{\circ} \mathrm{C}\). The vapor pressure of benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) at \(25^{\circ} \mathrm{C}\) is $13 \mathrm{kPa}$, and the solubility of air in benzene is assumed to be negligible. Calculate \((a)\) the average mass transfer coefficient in \(\mathrm{m} / \mathrm{s}\), (b) the molar concentration of benzene in the outlet air, and \((c)\) the evaporation rate of benzene in $\mathrm{kg} / \mathrm{h}$.

The surface of an iron component is to be hardened by carbon. The diffusion coefficient of carbon in iron at \(1000^{\circ} \mathrm{C}\) is given to be $3 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}$. If the penetration depth of carbon in iron is desired to be \(1.0 \mathrm{~mm}\), the hardening process must take at least (a) \(1.10 \mathrm{~h}\) (b) \(1.47 \mathrm{~h}\) (c) \(1.86 \mathrm{~h}\) (d) \(2.50 \mathrm{~h}\) (e) \(2.95 \mathrm{~h}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free