Chapter 14: Problem 6
What do \((a)\) homogeneous reactions and \((b)\) heterogeneous reactions represent in mass transfer? To what do they correspond in heat transfer?
Chapter 14: Problem 6
What do \((a)\) homogeneous reactions and \((b)\) heterogeneous reactions represent in mass transfer? To what do they correspond in heat transfer?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider one-dimensional mass transfer in a moving medium that consists of species \(A\) and \(B\) with \(\rho=\) \(\rho_{A}+\rho_{B}=\) constant. Mark these statements as being True or False. (a) The rates of mass diffusion of species \(A\) and \(B\) are equal in magnitude and opposite in direction. (b) \(D_{A B}=D_{B A^{-}}\) (c) During equimolar counterdiffusion through a tube, equal numbers of moles of \(A\) and \(B\) move in opposite directions, and thus a velocity measurement device placed in the tube will read zero. (d) The lid of a tank containing propane gas (which is heavier than air) is left open. If the surrounding air and the propane in the tank are at the same temperature and pressure, no propane will escape the tank, and no air will enter.
Heat convection is expressed by Newton's law of cooling as $\dot{Q}=h A_{s}\left(T_{s}-T_{\infty}\right)$. Express mass convection in an analogous manner on a mass basis, and identify all the quantities in the expression and state their units.
Consider a shallow body of water. Is it possible for this water to freeze during a cold and dry night even when the ambient air and surrounding surface temperatures never drop to \(0^{\circ} \mathrm{C}\) ? Explain.
Nitrogen gas at high pressure and \(298 \mathrm{~K}\) is contained in a \(2-\mathrm{m} \times 2-\mathrm{m} \times 2-\mathrm{m}\) cubical container made of natural rubber whose walls are \(3 \mathrm{~cm}\) thick. The concentration of nitrogen in the rubber at the inner and outer surfaces are $0.067 \mathrm{~kg} / \mathrm{m}^{3}\( and \)0.009 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The diffusion coefficient of nitrogen through rubber is $1.5 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$. The mass flow rate of nitrogen by diffusion through the cubical container is (a) $8.1 \times 10^{-10} \mathrm{~kg} / \mathrm{s}$ (b) \(3.2 \times 10^{-10} \mathrm{~kg} / \mathrm{s}\) (c) \(3.8 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (d) \(7.0 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (e) \(1.60 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\)
A natural gas (methane, \(\mathrm{CH}_{4}\) ) storage facility uses 3 -cm- diameter by 6 -m-long vent tubes on its storage tanks to keep the pressure in these tanks at atmospheric value. If the diffusion coefficient for methane in air is \(0.2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\) and the temperature of the tank and environment is \(300 \mathrm{~K}\), the rate at which natural gas is lost from a tank through one vent tube is (a) \(13 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (b) \(3.2 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (c) \(8.7 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (d) \(5.3 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (e) \(0.12 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.