Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What do \((a)\) homogeneous reactions and \((b)\) heterogeneous reactions represent in mass transfer? To what do they correspond in heat transfer?

Short Answer

Expert verified
Define homogeneous and heterogeneous reactions in mass transfer and their corresponding concepts in heat transfer.

Step by step solution

01

Define Homogeneous Reactions

In mass transfer, homogeneous reactions are those reactions where all the reactants and products are in the same phase (such as gas or liquid). These reactions occur throughout the entire volume of the reacting mixture, resulting in uniform local concentration.
02

Define Heterogeneous Reactions

Heterogeneous reactions, in contrast, involve reactants and products in different phases. These reactions occur at the interface between the phases, resulting in local concentration gradients. Common examples include solid-liquid and gas-liquid reactions.
03

Corresponding Concepts in Heat Transfer

In heat transfer, the concepts parallel to homogeneous and heterogeneous reactions are conduction and convection, respectively. In conduction, heat is transferred within a single phase (e.g., solid or fluid) by direct molecular interaction and temperature gradient. In convection, heat is transferred between different phases (e.g., solid and fluid) due to bulk motion of fluid particles, resulting in local temperature gradients similar to heterogeneous reactions in mass transfer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider one-dimensional mass transfer in a moving medium that consists of species \(A\) and \(B\) with \(\rho=\) \(\rho_{A}+\rho_{B}=\) constant. Mark these statements as being True or False. (a) The rates of mass diffusion of species \(A\) and \(B\) are equal in magnitude and opposite in direction. (b) \(D_{A B}=D_{B A^{-}}\) (c) During equimolar counterdiffusion through a tube, equal numbers of moles of \(A\) and \(B\) move in opposite directions, and thus a velocity measurement device placed in the tube will read zero. (d) The lid of a tank containing propane gas (which is heavier than air) is left open. If the surrounding air and the propane in the tank are at the same temperature and pressure, no propane will escape the tank, and no air will enter.

Heat convection is expressed by Newton's law of cooling as $\dot{Q}=h A_{s}\left(T_{s}-T_{\infty}\right)$. Express mass convection in an analogous manner on a mass basis, and identify all the quantities in the expression and state their units.

Consider a shallow body of water. Is it possible for this water to freeze during a cold and dry night even when the ambient air and surrounding surface temperatures never drop to \(0^{\circ} \mathrm{C}\) ? Explain.

Nitrogen gas at high pressure and \(298 \mathrm{~K}\) is contained in a \(2-\mathrm{m} \times 2-\mathrm{m} \times 2-\mathrm{m}\) cubical container made of natural rubber whose walls are \(3 \mathrm{~cm}\) thick. The concentration of nitrogen in the rubber at the inner and outer surfaces are $0.067 \mathrm{~kg} / \mathrm{m}^{3}\( and \)0.009 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The diffusion coefficient of nitrogen through rubber is $1.5 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$. The mass flow rate of nitrogen by diffusion through the cubical container is (a) $8.1 \times 10^{-10} \mathrm{~kg} / \mathrm{s}$ (b) \(3.2 \times 10^{-10} \mathrm{~kg} / \mathrm{s}\) (c) \(3.8 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (d) \(7.0 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (e) \(1.60 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\)

A natural gas (methane, \(\mathrm{CH}_{4}\) ) storage facility uses 3 -cm- diameter by 6 -m-long vent tubes on its storage tanks to keep the pressure in these tanks at atmospheric value. If the diffusion coefficient for methane in air is \(0.2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\) and the temperature of the tank and environment is \(300 \mathrm{~K}\), the rate at which natural gas is lost from a tank through one vent tube is (a) \(13 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (b) \(3.2 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (c) \(8.7 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (d) \(5.3 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (e) \(0.12 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free