Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exposure to high concentrations of gaseous short-term ammonia exposure level set by the Occupational Safety and Health Administration (OSHA) is $35 \mathrm{ppm}\( for \)15 \mathrm{~min}$. Consider a vessel filled with gaseous ammonia at \(30 \mathrm{~mol} / \mathrm{L}\), and a \(10-\mathrm{cm}\)-diameter circular plastic plug with a thickness of \(2 \mathrm{~mm}\) is used to contain the ammonia inside the vessel. The ventilation system is capable of keeping the room safe with fresh air, provided that the rate of ammonia being released is below \(0.2 \mathrm{mg} / \mathrm{s}\). If the diffusion coefficient of ammonia through the plug is $1.3 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$, determine whether or not the plug can safely contain the ammonia inside the vessel.

Short Answer

Expert verified
Answer: No, the plastic plug cannot safely contain ammonia gas inside the vessel, as the calculated leakage rate (0.52 mg/s) is higher than the safe rate as per OSHA guidelines (0.2 mg/s).

Step by step solution

01

Calculate the surface area of the plug

First, we need to calculate the surface area of the circular plug. We will use the formula for the area of a circle: A = πr^2, where r is the radius of the circle (half of the diameter). The radius of the plug is 5 cm, therefore, the surface area A in square meters is: A = π × (5 × 10^{-2})^2 A ≈ 0.00785 m^2
02

Calculate the ammonia concentration difference

We are given the ammonia concentration inside the vessel, which is C_i = 30mol/L. We can assume that the concentration outside the vessel is zero, C_o = 0mol/L.
03

Use the diffusion equation to calculate the rate of ammonia leakage

Using Fick's first law of diffusion, we have: J = -D × (C_i - C_o) / d where J is the molar flux (mol/m^2s), D is the diffusion coefficient (1.3 x 10^{-10} m^2/s), C_i and C_o are the inside and outside concentrations (30 mol/L and 0 mol/L, respectively), and d is the thickness of the plug (2 mm). J = - [(1.3 × 10^{-10}) × (30 × 10^3 - 0)] / (2 × 10^{-3}) J ≈ 1.95 × 10^{-6} mol/m^2s
04

Calculate the total leakage rate

Now, we need to multiply the molar flux by the surface area of the plug and the molar mass of ammonia to obtain the mass flux of ammonia (mg/s). Leakage rate = J × A × M Where M is the molar mass of ammonia (17 g/mol, but we will use 17,000 mg/mol for our calculation in milligrams). Leakage rate ≈ (1.95 × 10^{-6})(0.00785)(17000) Leakage rate ≈ 0.52 mg/s
05

Determine if the plug can safely contain the ammonia

The calculated leakage rate (0.52 mg/s) is higher than the safe rate as per OSHA guidelines (0.2 mg/s). Therefore, the answer is no - the plug cannot safely contain the ammonia inside the vessel.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A natural gas (methane, \(\mathrm{CH}_{4}\) ) storage facility uses 3 -cm- diameter by 6 -m-long vent tubes on its storage tanks to keep the pressure in these tanks at atmospheric value. If the diffusion coefficient for methane in air is \(0.2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\) and the temperature of the tank and environment is \(300 \mathrm{~K}\), the rate at which natural gas is lost from a tank through one vent tube is (a) \(13 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (b) \(3.2 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (c) \(8.7 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (d) \(5.3 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (e) \(0.12 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\)

Consider a 30 -cm-diameter pan filled with water at \(15^{\circ} \mathrm{C}\) in a room at \(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}\), and 30 percent relative humidity. Determine \((a)\) the rate of heat transfer by convection, (b) the rate of evaporation of water, and \((c)\) the rate of heat transfer to the water needed to maintain its temperature at \(15^{\circ} \mathrm{C}\). Disregard any radiation effects.

A glass bottle washing facility uses a well-agitated hot water bath at \(50^{\circ} \mathrm{C}\) with an open top that is placed on the ground. The bathtub is \(1 \mathrm{~m}\) high, \(2 \mathrm{~m}\) wide, and \(4 \mathrm{~m}\) long and is made of sheet metal so that the outer side surfaces are also at about \(50^{\circ} \mathrm{C}\). The bottles enter at a rate of 800 per minute at ambient temperature and leave at the water temperature. Each bottle has a mass of \(150 \mathrm{~g}\) and removes \(0.6 \mathrm{~g}\) of water as it leaves the bath wet. Makeup water is supplied at \(15^{\circ} \mathrm{C}\). If the average conditions in the plant are \(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\), and 50 percent relative humidity, and the average temperature of the surrounding surfaces is \(15^{\circ} \mathrm{C}\), determine \((a)\) the amount of heat and water removed by the bottles themselves per second, (b) the rate of heat loss from the top surface of the water bath by radiation, natural convection, and evaporation, \((c)\) the rate of heat loss from the side surfaces by natural convection and radiation, and \((d)\) the rate at which heat and water must be supplied to maintain steady operating conditions. Disregard heat loss through the bottom surface of the bath, and take the emissivities of sheet metal and water to be \(0.61\) and \(0.95\), respectively.

For the absorption of a gas (like carbon dioxide) into a liquid (like water) Henry's law states that partial pressure of the gas is proportional to the mole fraction of the gas in the liquid-gas solution with the constant of proportionality being Henry's constant. A bottle of soda pop \(\left(\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}\right)\) at room temperature has a Henry's constant of \(17,100 \mathrm{kPa}\). If the pressure in this bottle is \(140 \mathrm{kPa}\) and the partial pressure of the water vapor in the gas volume at the top of the bottle is neglected, the concentration of the \(\mathrm{CO}_{2}\) in the liquid \(\mathrm{H}_{2} \mathrm{O}\) is (a) \(0.004 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (b) \(0.008 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (c) \(0.012 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (d) \(0.024 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (e) \(0.035 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\)

Helium gas is stored at \(293 \mathrm{~K}\) in a 3-m-outer-diameter spherical container made of 3 -cm-thick Pyrex. The molar concentration of helium in the Pyrex is \(0.00069 \mathrm{kmol} / \mathrm{m}^{3}\) at the inner surface and negligible at the outer surface. Determine the mass flow rate of helium by diffusion through the Pyrex container.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free