Chapter 14: Problem 31
Write three boundary conditions for mass transfer (on a mass basis) for species \(\mathrm{A}\) at \(x=0\) that correspond to specified temperature, specified heat flux, and convection boundary conditions in heat transfer.
Chapter 14: Problem 31
Write three boundary conditions for mass transfer (on a mass basis) for species \(\mathrm{A}\) at \(x=0\) that correspond to specified temperature, specified heat flux, and convection boundary conditions in heat transfer.
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain how vapor pressure of the ambient air is determined when the temperature, total pressure, and relative humidity of the air are given.
Nitrogen gas at high pressure and \(298 \mathrm{~K}\) is contained in a \(2-\mathrm{m} \times 2-\mathrm{m} \times 2-\mathrm{m}\) cubical container made of natural rubber whose walls are \(3 \mathrm{~cm}\) thick. The concentration of nitrogen in the rubber at the inner and outer surfaces are $0.067 \mathrm{~kg} / \mathrm{m}^{3}\( and \)0.009 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The diffusion coefficient of nitrogen through rubber is $1.5 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$. The mass flow rate of nitrogen by diffusion through the cubical container is (a) $8.1 \times 10^{-10} \mathrm{~kg} / \mathrm{s}$ (b) \(3.2 \times 10^{-10} \mathrm{~kg} / \mathrm{s}\) (c) \(3.8 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (d) \(7.0 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (e) \(1.60 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\)
Methanol \(\left(\rho=791 \mathrm{~kg} / \mathrm{m}^{3}\right.\) and $\left.M=32 \mathrm{~kg} / \mathrm{kmol}\right)$ undergoes evaporation in a vertical tube with a uniform cross-sectional area of \(0.8 \mathrm{~cm}^{2}\). At the top of the tube, the methanol concentration is zero, and its surface is $30 \mathrm{~cm}$ from the top of the tube (Fig. P14-111). The methanol vapor pressure is \(17 \mathrm{kPa}\), with a mass diffusivity of $D_{A B}=0.162 \mathrm{~cm}^{2} / \mathrm{s}$ in air. The evaporation process is operated at \(25^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\). (a) Determine the evaporation rate of the methanol in \(\mathrm{kg} / \mathrm{h}\) and (b) plot the mole fraction of methanol vapor as a function of the tube height, from the methanol surface \((x=0)\) to the top of the tube \((x=L)\).
Using Henry's law, show that the dissolved gases in a liquid can be driven off by heating the liquid.
Consider a piece of steel undergoing a decarburization process at $925^{\circ} \mathrm{C}\(. The mass diffusivity of carbon in steel at \)925^{\circ} \mathrm{C}\( is \)1 \times 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$. Determine the depth below the surface of the steel at which the concentration of carbon is reduced to 40 percent from its initial value as a result of the decarburization process for \((a)\) an hour and \((b) 10\) hours. Assume the concentration of carbon at the surface is zero throughout the decarburization process.
What do you think about this solution?
We value your feedback to improve our textbook solutions.