Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the driving force for \((a)\) heat transfer, \((b)\) electric current flow, \((c)\) fluid flow, and \((d)\) mass transfer?

Short Answer

Expert verified
Answer: The driving forces for the mentioned phenomena are: (a) temperature difference, (b) electric potential difference (voltage), (c) pressure difference, and (d) concentration difference.

Step by step solution

01

(a) Driving force for heat transfer

The driving force for heat transfer is the temperature difference between two regions. Heat will always flow from a region of higher temperature to a region of lower temperature, tending to equalize the temperature between the two regions. It occurs through conduction, convection, and radiation.
02

(b) Driving force for electric current flow

The driving force for electric current flow is the electric potential difference (voltage) between two points in a circuit. The electric current will flow from the region of higher electric potential to the region of lower electric potential, as electrons move to minimize their potential energy. The relationship between voltage, current, and resistance is given by Ohm's law: V=IR, where V is the voltage, I is the current, and R is resistance.
03

(c) Driving force for fluid flow

The driving force for fluid flow is the pressure difference between two points in a fluid system. Fluid will flow from a region of higher pressure to a region of lower pressure, as pressure is a measure of the fluid's ability to transfer momentum and exert force on its surroundings. This pressure difference can be due to gravity, mechanical force, or thermal expansion, among other factors.
04

(d) Driving force for mass transfer

The driving force for mass transfer is the concentration difference of a specific species between two regions. Mass transfer will occur from the region of higher concentration to the region of lower concentration to achieve an equilibrium state. This process can take place through processes such as diffusion, osmosis, or more complex transport mechanisms like convection.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the difference between mass-average velocity and mole-average velocity during mass transfer in a moving medium? If one of these velocities is zero, will the other also necessarily be zero? Under what conditions will these two velocities be the same for a binary mixture?

A circular copper tube with an inner diameter of \(2 \mathrm{~cm}\) and a length of \(100 \mathrm{~m}\) is used to transport drinking water. Water flows in the tube at an average velocity of \(0.11 \mathrm{~m} / \mathrm{s}\) at $20^{\circ} \mathrm{C}$. At the inner tube surface, the mass concentration of copper in water is \(50 \mathrm{~g} / \mathrm{m}^{3}\). The Environmental Protection Agency (EPA) sets the standards for the National Primary Drinking Water Regulations (NPDWR) that apply to public water systems. The drinking water regulations limit the levels of contaminants in drinking water to protect public health. The maximum contaminant level for copper in drinking water, set by the NPDWR, is \(1.3 \mathrm{mg} / \mathrm{L}\). Above that, additional steps are required to treat the water before it is considered safe for the public. Determine whether the water from the tube has a safe level of copper as per the NPDWR. The diffusion coefficient for copper in water is \(1.5 \times\) \(10^{-9} \mathrm{~m}^{2} / \mathrm{s}\).

What is the low mass flux approximation in mass transfer analysis? Can the evaporation of water from a lake be treated as a low mass flux process?

Benzene-free air at \(25^{\circ} \mathrm{C}\) and \(101.3 \mathrm{kPa}\) enters a \(5-\mathrm{cm}\)-diameter tube at an average velocity of $5 \mathrm{~m} / \mathrm{s}$. The inner surface of the 6-m-long tube is coated with a thin film of pure benzene at \(25^{\circ} \mathrm{C}\). The vapor pressure of benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) at \(25^{\circ} \mathrm{C}\) is $13 \mathrm{kPa}$, and the solubility of air in benzene is assumed to be negligible. Calculate \((a)\) the average mass transfer coefficient in \(\mathrm{m} / \mathrm{s}\), (b) the molar concentration of benzene in the outlet air, and \((c)\) the evaporation rate of benzene in $\mathrm{kg} / \mathrm{h}$.

Pure \(\mathrm{N}_{2}\) gas at \(1 \mathrm{~atm}\) and \(25^{\circ} \mathrm{C}\) is flowing through a 10 -m-long, 3-cm-inner diameter pipe made of 2 -mm-thick rubber. Determine the rate at which \(\mathrm{N}_{2}\) leaks out of the pipe if the medium surrounding the pipe is \((a)\) a vacuum and \((b)\) atmospheric air at \(1 \mathrm{~atm}\) and \(25^{\circ} \mathrm{C}\) with 21 percent \(\mathrm{O}_{2}\) and 79 percent \(\mathrm{N}_{2}\). Answers: (ca) $2.28 \times 10^{-10} \mathrm{kmol} / \mathrm{s}\(, (b) \)4.78 \times\( \)10^{-11} \mathrm{kmol} / \mathrm{s}$

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free