Chapter 14: Problem 26
Determine the binary diffusion coefficient for \((a)\) carbon dioxide in nitrogen, \((b)\) carbon dioxide in oxygen, and \((c)\) carbon dioxide in hydrogen at \(320 \mathrm{~K}\) and \(2 \mathrm{~atm}\).
Chapter 14: Problem 26
Determine the binary diffusion coefficient for \((a)\) carbon dioxide in nitrogen, \((b)\) carbon dioxide in oxygen, and \((c)\) carbon dioxide in hydrogen at \(320 \mathrm{~K}\) and \(2 \mathrm{~atm}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA glass of milk left on top of a counter in the kitchen at $15^{\circ} \mathrm{C}, 88 \mathrm{kPa}$, and 50 percent relative humidity is tightly sealed by a sheet of \(0.009\)-mm-thick aluminum foil whose permeance is $2.9 \times 10^{-12} \mathrm{~kg} / \mathrm{s} \cdot \mathrm{m}^{2} \cdot \mathrm{Pa}\(. The inner diameter of the glass is \)12 \mathrm{~cm}$. Assuming the air in the glass to be saturated at all times, determine how much the level of the milk in the glass will recede in \(12 \mathrm{~h}\). Answer: \(0.0011 \mathrm{~mm}\)
A thin plastic membrane separates hydrogen from air. The molar concentrations of hydrogen in the membrane at the inner and outer surfaces are determined to be \(0.045\) and \(0.002 \mathrm{kmol} / \mathrm{m}^{3}\), respectively. The binary diffusion coefficient of hydrogen in plastic at the operation temperature is \(5.3 \times\) \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\). Determine the mass flow rate of hydrogen by diffusion through the membrane under steady conditions if the thickness of the membrane is (a) \(2 \mathrm{~mm}\) and $(b) 0.5 \mathrm{~mm}$.
Hydrogen can cause fire hazards, and hydrogen gas leaking into surrounding air can lead to spontaneous ignition with extremely hot flames. Even at very low leakage rate, hydrogen can sustain combustion causing extended fire damages. Hydrogen gas is lighter than air, so if a leakage occurs it accumulates under roofs and forms explosive hazards. To prevent such hazards, buildings containing source of hydrogen must have adequate ventilation system and hydrogen sensors. Consider a metal spherical vessel, with an inner diameter of \(5 \mathrm{~m}\) and a thickness of \(3 \mathrm{~mm}\), containing hydrogen gas at \(2000 \mathrm{kPa}\). The vessel is situated in a room with atmospheric air at 1 atm. The ventilation system for the room is capable of keeping the air fresh, provided that the rate of hydrogen leakage is below $5 \mu \mathrm{g} / \mathrm{s}$. If the diffusion coefficient and solubility of hydrogen gas in the metal vessel are \(1.5 \times\) \(10^{-12} \mathrm{~m}^{2} / \mathrm{s}\) and \(0.005 \mathrm{kmol} / \mathrm{m}^{3}\)-bar, respectively, determine whether or not the vessel is safely containing the hydrogen gas.
Consider a brick house that is maintained at \(20^{\circ} \mathrm{C}\) and 60 percent relative humidity at a location where the atmospheric pressure is $85 \mathrm{kPa}$. The walls of the house are made of 20 -cm-thick brick whose permeance is \(23 \times 10^{-12} \mathrm{~kg} / \mathrm{s}\) - $\mathrm{m}^{2} \cdot \mathrm{Pa}$. Taking the vapor pressure at the outer side of the wallboard to be zero, determine the maximum amount of water vapor that will diffuse through a \(3-\mathrm{m} \times 5-\mathrm{m}\) section of a wall during a 24-h period.
A rubber object is in contact with nitrogen \(\left(\mathrm{N}_{2}\right)\) at \(298 \mathrm{~K}\) and \(250 \mathrm{kPa}\). The solubility of nitrogen gas in rubber is \(0.00156 \mathrm{kmol} / \mathrm{m}^{3}\).bar. The mass density of nitrogen at the interface is (a) \(0.049 \mathrm{~kg} / \mathrm{m}^{3}\) (b) \(0.064 \mathrm{~kg} / \mathrm{m}^{3}\) (c) \(0.077 \mathrm{~kg} / \mathrm{m}^{3}\) (d) \(0.092 \mathrm{~kg} / \mathrm{m}^{3}\) (e) \(0.109 \mathrm{~kg} / \mathrm{m}^{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.