Chapter 14: Problem 2
Give examples for (a) liquid-to-gas, \((b)\) solid-to-liquid, (c) solid-to-gas, and \((d)\) gas-to-liquid mass transfer.
Chapter 14: Problem 2
Give examples for (a) liquid-to-gas, \((b)\) solid-to-liquid, (c) solid-to-gas, and \((d)\) gas-to-liquid mass transfer.
All the tools & learning materials you need for study success - in one app.
Get started for freeBenzene-free air at \(25^{\circ} \mathrm{C}\) and \(101.3 \mathrm{kPa}\) enters a \(5-\mathrm{cm}\)-diameter tube at an average velocity of $5 \mathrm{~m} / \mathrm{s}$. The inner surface of the 6-m-long tube is coated with a thin film of pure benzene at \(25^{\circ} \mathrm{C}\). The vapor pressure of benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) at \(25^{\circ} \mathrm{C}\) is $13 \mathrm{kPa}$, and the solubility of air in benzene is assumed to be negligible. Calculate \((a)\) the average mass transfer coefficient in \(\mathrm{m} / \mathrm{s}\), (b) the molar concentration of benzene in the outlet air, and \((c)\) the evaporation rate of benzene in $\mathrm{kg} / \mathrm{h}$.
Consider a piece of steel undergoing a decarburization process at $925^{\circ} \mathrm{C}\(. The mass diffusivity of carbon in steel at \)925^{\circ} \mathrm{C}\( is \)1 \times 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$. Determine the depth below the surface of the steel at which the concentration of carbon is reduced to 40 percent from its initial value as a result of the decarburization process for \((a)\) an hour and \((b) 10\) hours. Assume the concentration of carbon at the surface is zero throughout the decarburization process.
A natural gas (methane, \(\mathrm{CH}_{4}\) ) storage facility uses 3 -cm- diameter by 6 -m-long vent tubes on its storage tanks to keep the pressure in these tanks at atmospheric value. If the diffusion coefficient for methane in air is \(0.2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\) and the temperature of the tank and environment is \(300 \mathrm{~K}\), the rate at which natural gas is lost from a tank through one vent tube is (a) \(13 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (b) \(3.2 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (c) \(8.7 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (d) \(5.3 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\) (e) \(0.12 \times 10^{-5} \mathrm{~kg} / \mathrm{day}\)
Consider one-dimensional mass diffusion of species \(A\) through a plane wall. Does the species \(A\) content of the wall change during steady mass diffusion? How about during transient mass diffusion?
A soaked sponge is experiencing dry air flowing over its surface. The air is at 1 atm and zero relative humidity. Determine the difference in the air temperature and the surface temperature of the sponge, \(T_{\infty}-T_{s}\), when steady-state conditions are reached, if the sponge is soaked with \((a)\) water, \(D_{A B}=2.42 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\), and \((b)\) ammonia, \(D_{A B}=2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\). Evaluate the properties of air, water, and ammonia at $20^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}\(, and \)-40^{\circ} \mathrm{C}$, respectively.
What do you think about this solution?
We value your feedback to improve our textbook solutions.