Chapter 14: Problem 199
Air flows in a 4-cm-diameter wet pipe at \(20^{\circ} \mathrm{C}\) and $1 \mathrm{~atm}\( with an average velocity of \)4 \mathrm{~m} / \mathrm{s}$ in order to dry the surface. The Nusselt number in this case can be determined from \(\mathrm{Nu}=0.023 \operatorname{Re}^{0.8} \mathrm{Pr}^{0.4}\) where \(\operatorname{Re}=10,550\) and \(\mathrm{Pr}=\) \(0.731\). Also, the diffusion coefficient of water vapor in air is $2.42 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. Using the analogy between heat and mass transfer, the mass transfer coefficient inside the pipe for fully developed flow becomes (a) \(0.0918 \mathrm{~m} / \mathrm{s}\) (b) \(0.0408 \mathrm{~m} / \mathrm{s}\) (c) \(0.0366 \mathrm{~m} / \mathrm{s}\) (d) \(0.0203 \mathrm{~m} / \mathrm{s}\) (e) \(0.0022 \mathrm{~m} / \mathrm{s}\)