Chapter 14: Problem 197
Saturated water vapor at $25^{\circ} \mathrm{C}\left(P_{\text {stt }}=3.17 \mathrm{kPa}\right)\( flows in a pipe that passes through air at \)25^{\circ} \mathrm{C}$ with a relative humidity of 40 percent. The vapor is vented to the atmosphere through a \(9-\mathrm{mm}\) internal-diameter tube that extends $10 \mathrm{~m}$ into the air. The diffusion coefficient of vapor through air is \(2.5 \times\) \(10^{-5} \mathrm{~m}^{2} / \mathrm{s}\). The amount of water vapor lost to the atmosphere through this individual tube by diffusion is (a) \(1.7 \times 10^{-6} \mathrm{~kg}\) (b) \(2.3 \times 10^{-6} \mathrm{~kg}\) (c) \(3.8 \times 10^{-6} \mathrm{~kg}\) (d) \(5.0 \times 10^{-6} \mathrm{~kg}\) (e) \(7.1 \times 10^{-6} \mathrm{~kg}\)