Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the absorption of a gas (like carbon dioxide) into a liquid (like water) Henry's law states that partial pressure of the gas is proportional to the mole fraction of the gas in the liquid-gas solution with the constant of proportionality being Henry's constant. A bottle of soda pop \(\left(\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}\right)\) at room temperature has a Henry's constant of \(17,100 \mathrm{kPa}\). If the pressure in this bottle is \(140 \mathrm{kPa}\) and the partial pressure of the water vapor in the gas volume at the top of the bottle is neglected, the concentration of the \(\mathrm{CO}_{2}\) in the liquid \(\mathrm{H}_{2} \mathrm{O}\) is (a) \(0.004 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (b) \(0.008 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (c) \(0.012 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (d) \(0.024 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\) (e) \(0.035 \mathrm{~mol}-\mathrm{CO}_{2} / \mathrm{mol}\)

Short Answer

Expert verified
Answer: The concentration of CO2 in the liquid H2O is approximately 0.008 mol-CO2/mol.

Step by step solution

01

Recall the formula for Henry's law

According to Henry's law, the partial pressure of the gas (P) is proportional to the mole fraction (x) of the gas in the solution, with the constant of proportionality being Henry's constant (kH): P = kH * x Now, we will plug the given values into this equation to find the mole fraction of CO2 in the H2O.
02

Substitute the values and solve

Given: P = 140 kPa, kH = 17,100 kPa We need to find x: 140 = 17,100 * x Divide both sides by 17,100: x = 0.00818
03

Find the closest answer among the given options

Now, let's find the closest option to the calculated value: (a) 0.004 (b) 0.008 (c) 0.012 (d) 0.024 (e) 0.035 The closest option to 0.00818 is (b) 0.008. Therefore, the concentration of CO2 in the liquid H2O is approximately 0.008 mol-CO2/mol.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One way of increasing heat transfer from the head on a hot summer day is to wet it. This is especially effective in windy weather, as you may have noticed. Approximating the head as a 30 -cm-diameter sphere at $30^{\circ} \mathrm{C}\( with an emissivity of \)0.95$, determine the total rate of heat loss from the head at ambient air conditions of $1 \mathrm{~atm}, 25^{\circ} \mathrm{C}, 30\( percent relative humidity, and \)25 \mathrm{~km} / \mathrm{h}$ winds if the head is \((a)\) dry and (b) wet. Take the surrounding temperature to be \(25^{\circ} \mathrm{C}\). Answers: (a) \(40.5 \mathrm{~W}\), (b) $385 \mathrm{~W}$

A pond with an initial oxygen content of zero is to be oxygenated by forming a tent over the water surface and filling the tent with oxygen gas at \(25^{\circ} \mathrm{C}\) and \(110 \mathrm{kPa}\). Determine the mole fraction of oxygen at a depth of \(0.8 \mathrm{~cm}\) from the surface after $24 \mathrm{~h}$.

You probably have noticed that balloons inflated with helium gas rise in the air the first day during a party but they fall down the next day and act like ordinary balloons filled with air. This is because the helium in the balloon slowly leaks out through the wall while air leaks in by diffusion. Consider a balloon that is made of \(0.2\)-mm-thick soft rubber and has a diameter of \(15 \mathrm{~cm}\) when inflated. The pressure and temperature inside the balloon are initially \(120 \mathrm{kPa}\) and $25^{\circ} \mathrm{C}$. The permeability of rubber to helium, oxygen, and nitrogen at \(25^{\circ} \mathrm{C}\) are \(9.4 \times 10^{-13}, 7.05 \times 10^{-13}\), and $2.6 \times 10^{-13} \mathrm{kmol} / \mathrm{m} \cdot \mathrm{s} \cdot \mathrm{bar}$, respectively. Determine the initial rates of diffusion of helium, oxygen, and nitrogen through the balloon wall and the mass fraction of helium that escapes the balloon during the first 5 \(\mathrm{h}\), assuming the helium pressure inside the balloon remains nearly constant. Assume air to be 21 percent oxygen and 79 percent nitrogen by mole numbers, and take the room conditions to be \(100 \mathrm{kPa}\) and \(25^{\circ} \mathrm{C}\).

In natural convection mass transfer, the Grashof number is evaluated using density difference instead of temperature difference. Can the Grashof number evaluated this way be used in heat transfer calculations also?

Define the following terms: mass-average velocity, diffusion velocity, stationary medium, and moving medium.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free