A sphere of ice, \(5 \mathrm{~cm}\) in diameter, is exposed to $65 \mathrm{~km}
/ \mathrm{h}$ wind with 15 percent relative humidity. Both the ice sphere and
air are at \(-1^{\circ} \mathrm{C}\) and \(90 \mathrm{kPa}\). Predict the rate of
evaporation of the ice in \(\mathrm{g} / \mathrm{h}\) by use of the following
correlation for single spheres: $\mathrm{Sh}=\left[4.0+1.21(\mathrm{ReSc})^{2
/ 3}\right]^{0.5}\(. Data at \)-1^{\circ} \mathrm{C}\( and \)90 \mathrm{kPa}:
D_{\text {ais } \mathrm{H}, \mathrm{O}}=2.5 \times 10^{-5} \mathrm{~m}^{2} /
\mathrm{s}^{3}\(, kinematic viscosity (air) \)=1.32 \times 10^{-7}
\mathrm{~m}^{2} / \mathrm{s}\(, vapor pressure \)\left(\mathrm{H}_{2}
\mathrm{O}\right)=0.56 \mathrm{kPa}\( and density (ice) \)=915 \mathrm{~kg} /
\mathrm{m}^{3}$.