Chapter 14: Problem 129
What is the low mass flux approximation in mass transfer analysis? Can the evaporation of water from a lake be treated as a low mass flux process?
Chapter 14: Problem 129
What is the low mass flux approximation in mass transfer analysis? Can the evaporation of water from a lake be treated as a low mass flux process?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe local convection heat transfer coefficient for air flowing parallel over a 1 -m-long plate with irregular surface topology is experimentally determined to be \(h_{x}=0.5+12 x-0.7 x^{3}\), where \(h_{x}\) is in $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}$. If the plate surface is coated with water, determine the corresponding average mass convection coefficient over the entire plate. Assume properties can be evaluated at \(298 \mathrm{~K}\) and $1 \mathrm{~atm}$.
In transient mass diffusion analysis, can we treat the diffusion of a solid into another solid of finite thickness (such as the diffusion of carbon into an ordinary steel component) as a diffusion process in a semi-infinite medium? Explain.
Liquid methanol is accidentally spilled on a $1-\mathrm{m} \times 1-\mathrm{m}$ laboratory bench and covers the entire bench surface. A fan is providing a \(20 \mathrm{~m} / \mathrm{s}\) airflow parallel over the bench surface. The air is maintained at \(25^{\circ} \mathrm{C}\) and $1 \mathrm{~atm}$, and the concentration of methanol in the free stream is negligible. If the methanol vapor at the air-methanol interface has a pressure of \(4000 \mathrm{~Pa}\) and a temperature of \(25^{\circ} \mathrm{C}\), determine the evaporation rate of methanol on a molar basis.
Hydrogen gas at \(750 \mathrm{kPa}\) and \(85^{\circ} \mathrm{C}\) is stored in a spherical nickel vessel. The vessel is situated in a surrounding of atmospheric air at \(1 \mathrm{~atm}\). Determine the molar and mass concentrations of hydrogen in the nickel at the inner and outer surfaces of the vessel.
Air at \(40^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) flows over an 8-m-long wet plate with an average velocity of \(2.5 \mathrm{~m} / \mathrm{s}\) in order to dry the surface. Using the analogy between heat and mass transfer, determine the mass transfer coefficient on the plate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.