Chapter 14: Problem 127
Using the analogy between heat and mass transfer, explain how the mass transfer coefficient can be determined from the relations for the heat transfer coefficient.
Chapter 14: Problem 127
Using the analogy between heat and mass transfer, explain how the mass transfer coefficient can be determined from the relations for the heat transfer coefficient.
All the tools & learning materials you need for study success - in one app.
Get started for freeExposure to high concentrations of gaseous short-term ammonia exposure level set by the Occupational Safety and Health Administration (OSHA) is $35 \mathrm{ppm}\( for \)15 \mathrm{~min}$. Consider a vessel filled with gaseous ammonia at \(30 \mathrm{~mol} / \mathrm{L}\), and a \(10-\mathrm{cm}\)-diameter circular plastic plug with a thickness of \(2 \mathrm{~mm}\) is used to contain the ammonia inside the vessel. The ventilation system is capable of keeping the room safe with fresh air, provided that the rate of ammonia being released is below \(0.2 \mathrm{mg} / \mathrm{s}\). If the diffusion coefficient of ammonia through the plug is $1.3 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$, determine whether or not the plug can safely contain the ammonia inside the vessel.
Consider a tank that contains moist air at 3 atm and whose walls are permeable to water vapor. The surrounding air at \(1 \mathrm{~atm}\) pressure also contains some moisture. Is it possible for the water vapor to flow into the tank from surroundings? Explain.
Nitrogen gas at high pressure and \(298 \mathrm{~K}\) is contained in a \(2-\mathrm{m} \times 2-\mathrm{m} \times 2-\mathrm{m}\) cubical container made of natural rubber whose walls are \(3 \mathrm{~cm}\) thick. The concentration of nitrogen in the rubber at the inner and outer surfaces are $0.067 \mathrm{~kg} / \mathrm{m}^{3}\( and \)0.009 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The diffusion coefficient of nitrogen through rubber is $1.5 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$. The mass flow rate of nitrogen by diffusion through the cubical container is (a) $8.1 \times 10^{-10} \mathrm{~kg} / \mathrm{s}$ (b) \(3.2 \times 10^{-10} \mathrm{~kg} / \mathrm{s}\) (c) \(3.8 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (d) \(7.0 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (e) \(1.60 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\)
One way of increasing heat transfer from the head on a hot summer day is to wet it. This is especially effective in windy weather, as you may have noticed. Approximating the head as a 30 -cm-diameter sphere at $30^{\circ} \mathrm{C}\( with an emissivity of \)0.95$, determine the total rate of heat loss from the head at ambient air conditions of $1 \mathrm{~atm}, 25^{\circ} \mathrm{C}, 30\( percent relative humidity, and \)25 \mathrm{~km} / \mathrm{h}$ winds if the head is \((a)\) dry and (b) wet. Take the surrounding temperature to be \(25^{\circ} \mathrm{C}\). Answers: (a) \(40.5 \mathrm{~W}\), (b) $385 \mathrm{~W}$
What is Stefan flow? Write the expression for Stefan's law and indicate what each variable represents.
What do you think about this solution?
We value your feedback to improve our textbook solutions.