Chapter 14: Problem 106
What is Stefan flow? Write the expression for Stefan's law and indicate what each variable represents.
Chapter 14: Problem 106
What is Stefan flow? Write the expression for Stefan's law and indicate what each variable represents.
All the tools & learning materials you need for study success - in one app.
Get started for freeAir at \(40^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) flows over an 8-m-long wet plate with an average velocity of \(2.5 \mathrm{~m} / \mathrm{s}\) in order to dry the surface. Using the analogy between heat and mass transfer, determine the mass transfer coefficient on the plate.
A pond with an initial oxygen content of zero is to be oxygenated by forming a tent over the water surface and filling the tent with oxygen gas at \(25^{\circ} \mathrm{C}\) and \(110 \mathrm{kPa}\). Determine the mole fraction of oxygen at a depth of \(0.8 \mathrm{~cm}\) from the surface after $24 \mathrm{~h}$.
One way of increasing heat transfer from the head on a hot summer day is to wet it. This is especially effective in windy weather, as you may have noticed. Approximating the head as a 30 -cm-diameter sphere at $30^{\circ} \mathrm{C}\( with an emissivity of \)0.95$, determine the total rate of heat loss from the head at ambient air conditions of $1 \mathrm{~atm}, 25^{\circ} \mathrm{C}, 30\( percent relative humidity, and \)25 \mathrm{~km} / \mathrm{h}$ winds if the head is \((a)\) dry and (b) wet. Take the surrounding temperature to be \(25^{\circ} \mathrm{C}\). Answers: (a) \(40.5 \mathrm{~W}\), (b) $385 \mathrm{~W}$
Air at \(52^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}\), and 20 percent relative humidity enters a \(5-\mathrm{cm}\)-diameter tube with an average velocity of $6 \mathrm{~m} / \mathrm{s}$. The tube inner surface is wetted uniformly with water, whose vapor pressure at \(52^{\circ} \mathrm{C}\) is \(13.6 \mathrm{kPa}\). While the temperature and pressure of air remain constant, the partial pressure of vapor in the outlet air is increased to \(10 \mathrm{kPa}\). Detemine \((a)\) the average mass transfer coefficient in $\mathrm{m} / \mathrm{s}\(, \)(b)$ the log-mean driving force for mass transfer in molar concentration units, \((c)\) the water evaporation rate in $\mathrm{kg} / \mathrm{h}\(, and \)(d)$ the length of the tube.
Express the mass flow rate of water vapor through a wall of thickness \(L\) in terms of the partial pressure of water vapor on both sides of the wall and the permeability of the wall to the water vapor.
What do you think about this solution?
We value your feedback to improve our textbook solutions.