Chapter 14: Problem 10
How does the mass diffusivity of a gas mixture change with \((a)\) temperature and \((b)\) pressure?
Chapter 14: Problem 10
How does the mass diffusivity of a gas mixture change with \((a)\) temperature and \((b)\) pressure?
All the tools & learning materials you need for study success - in one app.
Get started for freeA rubber object is in contact with nitrogen \(\left(\mathrm{N}_{2}\right)\) at \(298 \mathrm{~K}\) and \(250 \mathrm{kPa}\). The solubility of nitrogen gas in rubber is \(0.00156 \mathrm{kmol} / \mathrm{m}^{3}\).bar. The mass density of nitrogen at the interface is (a) \(0.049 \mathrm{~kg} / \mathrm{m}^{3}\) (b) \(0.064 \mathrm{~kg} / \mathrm{m}^{3}\) (c) \(0.077 \mathrm{~kg} / \mathrm{m}^{3}\) (d) \(0.092 \mathrm{~kg} / \mathrm{m}^{3}\) (e) \(0.109 \mathrm{~kg} / \mathrm{m}^{3}\)
A researcher is using a \(5-\mathrm{cm}\)-diameter Stefan tube to measure the mass diffusivity of chloroform in air at \(25^{\circ} \mathrm{C}\) and $1 \mathrm{~atm}\(. Initially, the liquid chloroform surface was \)7.00 \mathrm{~cm}\( from the top of the tube; after \)10 \mathrm{~h}$ elapsed, the liquid chloroform surface was \(7.44 \mathrm{~cm}\) from the top of the tube, which corresponds to \(222 \mathrm{~g}\) of chloroform being diffused. At \(25^{\circ} \mathrm{C}\), the chloroform vapor pressure is $0.263 \mathrm{~atm}$, and the concentration of chloroform is zero at the top of the tube. If the molar mass of chloroform is $119.39 \mathrm{~kg} / \mathrm{kmol}$, determine the mass diffusivity of chloroform in air.
What is the low mass flux approximation in mass transfer analysis? Can the evaporation of water from a lake be treated as a low mass flux process?
Nitrogen gas at high pressure and \(298 \mathrm{~K}\) is contained in a \(2-\mathrm{m} \times 2-\mathrm{m} \times 2-\mathrm{m}\) cubical container made of natural rubber whose walls are \(3 \mathrm{~cm}\) thick. The concentration of nitrogen in the rubber at the inner and outer surfaces are $0.067 \mathrm{~kg} / \mathrm{m}^{3}\( and \)0.009 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The diffusion coefficient of nitrogen through rubber is $1.5 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$. The mass flow rate of nitrogen by diffusion through the cubical container is (a) $8.1 \times 10^{-10} \mathrm{~kg} / \mathrm{s}$ (b) \(3.2 \times 10^{-10} \mathrm{~kg} / \mathrm{s}\) (c) \(3.8 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (d) \(7.0 \times 10^{-9} \mathrm{~kg} / \mathrm{s}\) (e) \(1.60 \times 10^{-8} \mathrm{~kg} / \mathrm{s}\)
Define the following terms: mass-average velocity, diffusion velocity, stationary medium, and moving medium.
What do you think about this solution?
We value your feedback to improve our textbook solutions.