Chapter 13: Problem 90
Give examples of radiation effects that affect human comfort.
Chapter 13: Problem 90
Give examples of radiation effects that affect human comfort.
All the tools & learning materials you need for study success - in one app.
Get started for freeA 90 -cm-diameter flat black disk is placed in the center of the top surface of a \(1-m \times 1-m \times 1-m\) black box. The view factor from the entire interior surface of the box to the interior surface of the disk is (a) \(0.07\) (b) \(0.13\) (c) \(0.26\) (d) \(0.32\) (e) \(0.50\)
A 2-m-internal-diameter double-walled spherical tank is used to store iced water at \(0^{\circ} \mathrm{C}\). Each wall is \(0.5 \mathrm{~cm}\) thick, and the \(1.5-\mathrm{cm}\)-thick airspace between the two walls of the tank is evacuated in order to minimize heat transfer. The surfaces surrounding the evacuated space are polished so that each surface has an emissivity of \(0.15\). The temperature of the outer wall of the tank is measured to be $20^{\circ} \mathrm{C}\(. Assuming the inner wall of the steel tank to be at \)0^{\circ} \mathrm{C}\(, determine \)(a)$ the rate of heat transfer to the iced water in the tank and \((b)\) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24 -h period.
Consider a \(1.5\)-m-high and 3-m-wide solar collector that is tilted at an angle \(20^{\circ}\) from the horizontal. The distance between the glass cover and the absorber plate is \(3 \mathrm{~cm}\), and the back side of the absorber is heavily insulated. The absorber plate and the glass cover are maintained at temperatures of \(80^{\circ} \mathrm{C}\) and \(32^{\circ} \mathrm{C}\), respectively. The emissivity of the glass surface is \(0.9\) and that of the absorber plate is \(0.8\). Determine the rate of heat loss from the absorber plate by natural convection and radiation. Answers: $750 \mathrm{~W}, 1289 \mathrm{~W}$
A radiation shield that has the same emissivity \(\varepsilon_{3}\) on both sides is placed between two large parallel plates, which are maintained at uniform temperatures of \(T_{1}=650 \mathrm{~K}\) and \(T_{2}=400 \mathrm{~K}\) and have emissivities of \(\varepsilon_{1}=0.6\) and \(\varepsilon_{2}=0.9\), respectively. Determine the emissivity of the radiation shield if the radiation heat transfer between the plates is to be reduced to 15 percent of that without the radiation shield.
Consider two rectangular surfaces perpendicular to each other with a common edge which is \(1.6 \mathrm{~m}\) long. The horizontal surface is $0.8 \mathrm{~m}\( wide, and the vertical surface is \)1.2 \mathrm{~m}$ high. The horizontal surface has an emissivity of \(0.75\) and is maintained at $450 \mathrm{~K}\(. The vertical surface is black and is maintained at \)700 \mathrm{~K}$. The back sides of the surfaces are insulated. The surrounding surfaces are at \(290 \mathrm{~K}\) and can be considered to have an emissivity of \(0.85\). Determine the net rate of radiation heat transfer between the two surfaces and between the horizontal surface and the surroundings.
What do you think about this solution?
We value your feedback to improve our textbook solutions.