Chapter 13: Problem 29
How does radiosity for a surface differ from the emitted energy? For what kinds of surfaces are these two quantities identical?
Chapter 13: Problem 29
How does radiosity for a surface differ from the emitted energy? For what kinds of surfaces are these two quantities identical?
All the tools & learning materials you need for study success - in one app.
Get started for freeAir is flowing between two infinitely large parallel plates. The upper plate is at \(500 \mathrm{~K}\) and has an emissivity of \(0.7\), while the lower plate is a black surface with temperature at \(330 \mathrm{~K}\). If the air temperature is \(290 \mathrm{~K}\), determine the convection heat transfer coefficient associated with the air.
A 2-m-internal-diameter double-walled spherical tank is used to store iced water at \(0^{\circ} \mathrm{C}\). Each wall is \(0.5 \mathrm{~cm}\) thick, and the \(1.5-\mathrm{cm}\)-thick airspace between the two walls of the tank is evacuated in order to minimize heat transfer. The surfaces surrounding the evacuated space are polished so that each surface has an emissivity of \(0.15\). The temperature of the outer wall of the tank is measured to be $20^{\circ} \mathrm{C}\(. Assuming the inner wall of the steel tank to be at \)0^{\circ} \mathrm{C}\(, determine \)(a)$ the rate of heat transfer to the iced water in the tank and \((b)\) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24 -h period.
Five identical thin aluminum sheets with emissivities of \(0.1\) on both sides are placed between two very large parallel plates, which are maintained at uniform temperatures of \(T_{1}=800 \mathrm{~K}\) and \(T_{2}=450 \mathrm{~K}\) and have emissivities of \(\varepsilon_{1}=\) \(\varepsilon_{2}=0.1\), respectively. Determine the net rate of radiation heat transfer between the two plates per unit surface area of the plates, and compare the result to that without the shield.
A furnace is shaped like a long semicylindrical duct of diameter $D=15 \mathrm{ft}\(. The base and the dome of the furnace have emissivities of \)0.5$ and \(0.9\) and are maintained at uniform temperatures of 550 and $1800 \mathrm{R}$, respectively. Determine the net rate of radiation heat transfer from the dome to the base surface per unit length during steady operation.
Explain all the different mechanisms of heat transfer from the human body \((a)\) through the skin and \((b)\) through the lungs.
What do you think about this solution?
We value your feedback to improve our textbook solutions.