Chapter 13: Problem 154
In a natural gas-fired boiler, combustion gases pass through 6-m-long,15-cm- diameter tubes immersed in water at \(1 \mathrm{~atm}\) pressure. The tube temperature is measured to be \(105^{\circ} \mathrm{C}\), and the emissivity of the inner surfaces of the tubes is estimated to be \(0.9\). Combustion gases enter the tube at \(1 \mathrm{~atm}\) and \(1000 \mathrm{~K}\) at a mean velocity of \(3 \mathrm{~m} / \mathrm{s}\). The mole fractions of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) in combustion gases are 8 percent and 16 percent, respectively. Assuming fully developed flow and using properties of air for combustion gases, determine \((a)\) the rates of heat transfer by convection and by radiation from the combustion gases to the tube wall and \((b)\) the rate of evaporation of water.