Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An average person produces \(0.50 \mathrm{lbm}\) of moisture while taking a shower and \(0.12 \mathrm{lbm}\) while bathing in a tub. Consider a family of four who shower once a day in a bathroom that is not ventilated. Taking the heat of vaporization of water to be \(1050 \mathrm{Btu} / \mathrm{lbm}\), determine the contribution of showers to the latent heat load of the air conditioner in summer per day.

Short Answer

Expert verified
Answer: The contribution of showers to the latent heat load of the air conditioner in summer per day for a family of four is 2100 Btu.

Step by step solution

01

1. Determine the total moisture produced by the family members taking showers

To determine the total moisture produced by the family members, we will multiply the given average moisture produced per shower with the number of family members. Total moisture produced = (Average moisture produced per shower) x (Number of family members) Total moisture produced = (0.50 lbm) x (4)
02

2. Calculate the total moisture produced

Now, let's calculate the total moisture produced by the family members. Total moisture produced = (0.50 lbm) x (4) = 2 lbm
03

3. Determine the contribution to the latent heat load from showers

To find the heat load from showers, we will multiply the total moisture produced by the heat of vaporization of water. Latent heat load from showers = (Total moisture produced) x (Heat of vaporization of water) Latent heat load from showers = (2 lbm) x (1050 Btu/lbm)
04

4. Calculate the latent heat load from showers

Finally, let's calculate the latent heat load from showers. Latent heat load from showers = (2 lbm) x (1050 Btu/lbm) = 2100 Btu Therefore, the contribution of showers to the latent heat load of the air conditioner in summer per day is 2100 Btu.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is sensible heat? How is the sensible heat loss from a human body affected by \((a)\) skin temperature, \((b)\) environment temperature, and \((c)\) air motion?

Consider an equimolar mixture of \(\mathrm{CO}_{2}\) and \(\mathrm{O}_{2}\) gases at \(800 \mathrm{~K}\) and a total pressure of \(0.5 \mathrm{~atm}\). For a path length of \(1.2 \mathrm{~m}\), determine the emissivity of the gas.

A large number of long tubes, each of diameter \(D\), are placed parallel to each other and at a center-to-center distance of s. Since all of the tubes are geometrically similar and at the same temperature, these could be treated collectively as one surface \(\left(A_{j}\right)\) for radiation heat transfer calculations. As shown in Fig. P13-140, the tube bank \(\left(A_{j}\right)\) is placed opposite a large flat wall \(\left(A_{j}\right)\) such that the tube bank is parallel to the wall. (a) Calculate the view factors \(F_{i j}\) and \(F_{j i}\) for $s=3.0 \mathrm{~cm}\( and \)D=1.5 \mathrm{~cm}$. (b) Calculate the net rate of radiation heat transfer between the wall and the tube bank per unit area of the wall when $T_{i}=900^{\circ} \mathrm{C}, T_{j}=60^{\circ} \mathrm{C}, \varepsilon_{i}=0.8\(, and \)\varepsilon_{j}=0.9$. (c) A fluid flows through the tubes at an average temperature of $40^{\circ} \mathrm{C}\(, resulting in a heat transfer coefficient of \)2.0 \mathrm{~kW} / \mathrm{m}^{2} \cdot \mathrm{K}\(. Assuming \)T_{i}=900^{\circ} \mathrm{C}, \varepsilon_{i}=0.8\( and \)\varepsilon_{j}=0.9$ (as above) and neglecting the tube wall thickness and convection from the outer surface, calculate the temperature of the tube surface in steady operation.

A 2-m-internal-diameter double-walled spherical tank is used to store iced water at \(0^{\circ} \mathrm{C}\). Each wall is \(0.5 \mathrm{~cm}\) thick, and the \(1.5-\mathrm{cm}\)-thick airspace between the two walls of the tank is evacuated in order to minimize heat transfer. The surfaces surrounding the evacuated space are polished so that each surface has an emissivity of \(0.15\). The temperature of the outer wall of the tank is measured to be $20^{\circ} \mathrm{C}\(. Assuming the inner wall of the steel tank to be at \)0^{\circ} \mathrm{C}\(, determine \)(a)$ the rate of heat transfer to the iced water in the tank and \((b)\) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24 -h period.

In a natural gas-fired boiler, combustion gases pass through 6-m-long,15-cm- diameter tubes immersed in water at \(1 \mathrm{~atm}\) pressure. The tube temperature is measured to be \(105^{\circ} \mathrm{C}\), and the emissivity of the inner surfaces of the tubes is estimated to be \(0.9\). Combustion gases enter the tube at \(1 \mathrm{~atm}\) and \(1000 \mathrm{~K}\) at a mean velocity of \(3 \mathrm{~m} / \mathrm{s}\). The mole fractions of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) in combustion gases are 8 percent and 16 percent, respectively. Assuming fully developed flow and using properties of air for combustion gases, determine \((a)\) the rates of heat transfer by convection and by radiation from the combustion gases to the tube wall and \((b)\) the rate of evaporation of water.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free