Chapter 13: Problem 119
Explain all the different mechanisms of heat transfer from the human body \((a)\) through the skin and \((b)\) through the lungs.
Chapter 13: Problem 119
Explain all the different mechanisms of heat transfer from the human body \((a)\) through the skin and \((b)\) through the lungs.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a \(3-\mathrm{m} \times 3-\mathrm{m} \times 3-\mathrm{m}\) cubical furnace. The base surface is black and has a temperature of \(400 \mathrm{~K}\). The radiosities for the top and side surfaces are calculated to be $7500 \mathrm{~W} / \mathrm{m}^{2}\( and \)3200 \mathrm{~W} / \mathrm{m}^{2}$, respectively. If the temperature of the side surfaces is \(485 \mathrm{~K}\), the emissivity of the side surfaces is (a) \(0.37\) (b) \(0.55\) (c) \(0.63\) (d) \(0.80\) (e) \(0.89\)
Consider a person who is resting or doing light work. Is it fair to say that roughly one-third of the metabolic heat generated in the body is dissipated to the environment by convection, one-third by evaporation, and the remaining onethird by radiation?
How does radiation transfer through a participating medium differ from that through a nonparticipating medium?
A row of tubes, equally spaced at a distance that is twice the diameter of the tubes, is positioned between two large parallel plates. The surface temperature of the tubes is constant at \(10^{\circ} \mathrm{C}\) and the top and bottom plates are at constant temperatures of \(100^{\circ} \mathrm{C}\) and \(350^{\circ} \mathrm{C}\), respectively. If the surfaces behave as blackbody, determine the net radiation heat flux leaving the bottom plate.
A radiation shield that has the same emissivity \(\varepsilon_{3}\) on both sides is placed between two large parallel plates, which are maintained at uniform temperatures of \(T_{1}=650 \mathrm{~K}\) and \(T_{2}=400 \mathrm{~K}\) and have emissivities of \(\varepsilon_{1}=0.6\) and \(\varepsilon_{2}=0.9\), respectively. Determine the emissivity of the radiation shield if the radiation heat transfer between the plates is to be reduced to 15 percent of that without the radiation shield.
What do you think about this solution?
We value your feedback to improve our textbook solutions.