Chapter 11: Problem 92
Consider two double-pipe counterflow heat exchangers that are identical except that one is twice as long as the other one. Which heat exchanger is more likely to have a higher effectiveness?
Chapter 11: Problem 92
Consider two double-pipe counterflow heat exchangers that are identical except that one is twice as long as the other one. Which heat exchanger is more likely to have a higher effectiveness?
All the tools & learning materials you need for study success - in one app.
Get started for freeA performance test is being conducted on a doublepipe counterflow heat exchanger that carries engine oil and water at a flow rate of $2.5 \mathrm{~kg} / \mathrm{s}\( and \)1.75 \mathrm{~kg} / \mathrm{s}$, respectively. Since the heat exchanger has been in service for a long time, it is suspected that fouling might have developed inside the heat exchanger that could affect the overall heat transfer coefficient. The test to be carried out is such that, for a designed value of the overall heat transfer coefficient of $450 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( and a surface area of \)7.5 \mathrm{~m}^{2}\(, the oil must be heated from \)25^{\circ} \mathrm{C}$ to \(55^{\circ} \mathrm{C}\) by passing hot water at $100^{\circ} \mathrm{C}\left(c_{p}=4206 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)$ at the flow rates mentioned above. Determine if the fouling has affected the overall heat transfer coefficient. If yes, then what is the magnitude of the fouling resistance?
Consider a condenser unit (shell and tube heat exchanger) of an HVAC facility where saturated refrigerant \(\mathrm{R}-134 \mathrm{a}\) at a saturation pressure of \(1318.6 \mathrm{kPa}\) and at a rate of $2.5 \mathrm{~kg} / \mathrm{s}$ flows through thin-walled copper tubes. The refrigerant enters the condenser as saturated vapor and we wish to have a saturated liquid refrigerant at the exit. The cooling of refrigerant is carried out by cold water that enters the heat exchanger at \(10^{\circ} \mathrm{C}\) and exits at \(40^{\circ} \mathrm{C}\). Assuming the initial overall heat transfer coefficient of the heat exchanger to be $3500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, determine the surface area of the heat exchanger and the mass flow rate of cooling water for complete condensation of the refrigerant. In practice, over a long period of time, fouling occurs inside the heat exchanger that reduces its overall heat transfer coefficient and causes the mass flow rate of cooling water to increase. Increase in the mass flow rate of cooling water will require additional pumping power, making the heat exchange process uneconomical. To prevent the condenser unit from underperforming, assume that fouling has occurred inside the heat exchanger and has reduced its overall heat transfer coefficient by 20 percent. For the same inlet temperature and flow rate of refrigerant, determine the new flow rate of cooling water to ensure complete condensation of the refrigerant at the heat exchanger exit.
A shell-and-tube heat exchanger is used for heating $14 \mathrm{~kg} / \mathrm{s}\( of oil \)\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( from \)20^{\circ} \mathrm{C}\( to \)46^{\circ} \mathrm{C}$. The heat exchanger has one shell pass and six tube passes. Water enters the shell side at \(80^{\circ} \mathrm{C}\) and leaves at \(60^{\circ} \mathrm{C}\). The overall heat transfer coefficient is estimated to be $1000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Calculate the rate of heat transfer and the heat transfer area.
A two-shell-pass and four-tube-pass heat exchanger is used for heating a hydrocarbon stream $\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( steadily from \)20^{\circ} \mathrm{C}\( to \)50^{\circ} \mathrm{C}\(. A water stream enters the shell side at \)80^{\circ} \mathrm{C}$ and leaves at \(40^{\circ} \mathrm{C}\). There are 160 thin-walled tubes, each with a diameter of \(2.0 \mathrm{~cm}\) and length of \(1.5 \mathrm{~m}\). The tube-side and shell-side heat transfer coefficients are \(1.6\) and $2.5 \mathrm{~kW} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. (a) Calculate the rate of heat transfer and the mass rates of water and hydrocarbon streams. (b) With usage, the outlet hydrocarbon-stream temperature was found to decrease by \(5^{\circ} \mathrm{C}\) due to the deposition of solids on the tube surface. Estimate the magnitude of the fouling factor.
Explain how the maximum possible heat transfer rate \(\dot{Q}_{\max }\) in a heat exchanger can be determined when the mass flow rates, specific heats, and inlet temperatures of the two fluids are specified. Does the value of \(\dot{Q}_{\max }\) depend on the type of the heat exchanger?
What do you think about this solution?
We value your feedback to improve our textbook solutions.