Chapter 11: Problem 89
Under what conditions can a counterflow heat exchanger have an effectiveness of 1 ? What would your answer be for a parallel-flow heat exchanger?
Chapter 11: Problem 89
Under what conditions can a counterflow heat exchanger have an effectiveness of 1 ? What would your answer be for a parallel-flow heat exchanger?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a water-to-water counterflow heat exchanger with these specifications. Hot water enters at \(90^{\circ} \mathrm{C}\) while cold water enters at \(20^{\circ} \mathrm{C}\). The exit temperature of the hot water is \(15^{\circ} \mathrm{C}\) greater than that of the cold water, and the mass flow rate of the hot water is 50 percent greater than that of the cold water. The product of heat transfer surface area and the overall heat transfer coefficient is \(2200 \mathrm{~W} / \mathrm{K}\). Taking the specific heat of both cold and hot water to be $c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\(, determine \)(a)\( the outlet temperature of the cold water, \)(b)$ the effectiveness of the heat exchanger, \((c)\) the mass flow rate of the cold water, and \((d)\) the heat transfer rate.
Ethanol is vaporized at $78^{\circ} \mathrm{C}\left(h_{f \mathrm{~g}}=846 \mathrm{~kJ} / \mathrm{kg}\right)$ in a double-pipe parallel-flow heat exchanger at a rate of \(0.04 \mathrm{~kg} / \mathrm{s}\) by hot oil \(\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) that enters at \(115^{\circ} \mathrm{C}\). If the heat transfer surface area and the overall heat transfer coefficients are \(6.2 \mathrm{~m}^{2}\) and $320 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively, determine the outlet temperature and the mass flow rate of oil using \((a)\) the LMTD method and \((b)\) the \(\varepsilon-\mathrm{NTU}\) method.
Geothermal water $\left(c_{p}=4250 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)75^{\circ} \mathrm{C}$ is to be used to heat fresh water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(17^{\circ} \mathrm{C}\) at a rate of \(1.2 \mathrm{~kg} / \mathrm{s}\) in a double-pipe counterflow heat exchanger. The heat transfer surface area is $25 \mathrm{~m}^{2}\(, the overall heat transfer coefficient is \)480 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, and the mass flow rate of geothermal water is larger than that of fresh water. If the effectiveness of the heat exchanger must be \(0.823\), determine the mass flow rate of geothermal water and the outlet temperatures of both fluids.
Consider a double-pipe heat exchanger with a tube diameter of $10 \mathrm{~cm}$ and negligible tube thickness. The total thermal resistance of the heat exchanger was calculated to be \(0.025 \mathrm{k} / \mathrm{W}\) when it was first constructed. After some prolonged use, fouling occurs at both the inner and outer surfaces with the fouling factors $0.00045 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\( and \)0.00015 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}$, respectively. The percentage decrease in the rate of heat transfer in this heat exchanger due to fouling is (a) \(2.3 \%\) (b) \(6.8 \%\) (c) \(7.1 \%\) (d) \(7.6 \%\) (e) \(8.5 \%\)
The National Sanitation Foundation (NSF) standard for commercial warewashing equipment (ANSL/NSF 3) requires that the final rinse water temperature be between 82 and \(90^{\circ} \mathrm{C}\). A shell-and-tube heat exchanger is to heat \(0.5 \mathrm{~kg} / \mathrm{s}\) of water $\left(c_{p}=4200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( from 48 to \)86^{\circ} \mathrm{C}$ by geothermal brine flowing through a single shell pass. The heated water is then fed into commercial warewashing equipment. The geothermal brine enters and exits the heat exchanger at 98 and \(90^{\circ} \mathrm{C}\), respectively. The water flows through four thin-walled tubes, each with a diameter of $25 \mathrm{~mm}$, with all four tubes making the same number of passes through the shell. The tube length per pass for each tube is \(5 \mathrm{~m}\). The corresponding convection heat transfer coefficients on the outer and inner tube surfaces are 1050 and $2700 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. The estimated fouling factor caused by the accumulation of deposit from the geothermal brine is $0.0002 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}$. Determine the number of passes required for the tubes inside the shell to heat the water to \(86^{\circ} \mathrm{C}\), within the temperature range required by the ANIS/NSF 3 standard.
What do you think about this solution?
We value your feedback to improve our textbook solutions.