Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Can the temperature of the hot fluid drop below the inlet temperature of the cold fluid at any location in a heat exchanger? Explain.

Short Answer

Expert verified
Answer: The hot fluid's temperature cannot drop below the cold fluid's inlet temperature because heat transfer occurs naturally from a higher temperature to a lower temperature. If the hot fluid dropped below the cold fluid's inlet temperature, it would imply heat transfer in the opposite direction, which is not possible in a heat exchanger.

Step by step solution

01

Understand heat exchangers

A heat exchanger is a device used to transfer heat between two fluids without mixing them. It is typically used for heating or cooling processes in various industries. The main principle behind the operation of a heat exchanger is the exchange of heat energy between the hot fluid (with a higher temperature) and the cold fluid (with a lower temperature).
02

Analyze the process of heat exchange

The hot fluid flows through the heat exchanger and transfers its heat to the cold fluid. This causes the cold fluid to increase its temperature and the hot fluid to decrease its temperature. The process continues as long as there is a temperature difference between the two fluids.
03

Recognize the limitations of heat exchange

The heat exchange process is driven by the temperature difference between the hot and cold fluids. The heat transfer will continue until the temperature difference becomes minimal or the exchange process reaches equilibrium. However, there is always some difference in temperature between the fluids to ensure the heat transfer is still occurring.
04

Explain why the hot fluid's temperature cannot drop below the cold fluid's inlet temperature

The hot fluid cannot drop below the cold fluid's inlet temperature because it would mean that heat transfer is happening in the opposite direction – from the cold fluid to the hot fluid. However, this is not possible since heat transfer occurs naturally from a higher temperature (hot fluid) to a lower temperature (cold fluid). Hence, the hot fluid's temperature can never drop below the cold fluid's inlet temperature at any location in a heat exchanger. In conclusion, the temperature of the hot fluid cannot drop below the inlet temperature of the cold fluid at any location in a heat exchanger due to the nature of heat transfer, which always occurs from a higher temperature to a lower temperature.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Geothermal water $\left(c_{p}=4250 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)75^{\circ} \mathrm{C}$ is to be used to heat fresh water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(17^{\circ} \mathrm{C}\) at a rate of \(1.2 \mathrm{~kg} / \mathrm{s}\) in a double-pipe counterflow heat exchanger. The heat transfer surface area is $25 \mathrm{~m}^{2}\(, the overall heat transfer coefficient is \)480 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, and the mass flow rate of geothermal water is larger than that of fresh water. If the effectiveness of the heat exchanger must be \(0.823\), determine the mass flow rate of geothermal water and the outlet temperatures of both fluids.

By taking the limit as \(\Delta T_{2} \rightarrow \Delta T_{1}\), show that when \(\Delta T_{1}=\Delta T_{2}\) for a heat exchanger, the \(\Delta T_{\mathrm{lm}}\) relation reduces to \(\Delta T_{\mathrm{lm}}=\Delta T_{1}=\Delta T_{2}\).

Glycerin \(\left(c_{p}=2400 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(20^{\circ} \mathrm{C}\) and \(0.5 \mathrm{~kg} / \mathrm{s}\) is to be heated by ethylene glycol $\left(c_{p}=2500 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)60^{\circ} \mathrm{C}$ in a thin-walled double-pipe parallel-flow heat exchanger. The temperature difference between the two fluids is \(15^{\circ} \mathrm{C}\) at the outlet of the heat exchanger. If the overall heat transfer coefficient is $240 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( and the heat transfer surface area is \)3.2 \mathrm{~m}^{2}$, determine \((a)\) the rate of heat transfer, \((b)\) the outlet temperature of the glycerin, and \((c)\) the mass flow rate of the ethylene glycol.

Describe the cardiovascular countercurrent mechanism in the human body.

Cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( enters a crossflow heat exchanger at \)14^{\circ} \mathrm{C}\( at a rate of \)0.35 \mathrm{~kg} / \mathrm{s}$ where it is heated by hot air $\left(c_{p}=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the heat exchanger at \)65^{\circ} \mathrm{C}$ at a rate of \(0.8 \mathrm{~kg} / \mathrm{s}\) and leaves at $25^{\circ} \mathrm{C}$. Determine the maximum outlet temperature of the cold water and the effectiveness of this heat exchanger.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free