Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What does the effectiveness of a heat exchanger represent? Can effectiveness be greater than 1? On what factors does the effectiveness of a heat exchanger depend?

Short Answer

Expert verified
Answer: No, the effectiveness of a heat exchanger cannot be greater than 1, as it represents the ratio of actual heat transfer to the maximum possible heat transfer. An effectiveness value of 1 indicates that the heat exchanger has reached its maximum possible heat transfer capacity.

Step by step solution

01

Definition of Effectiveness

The effectiveness of a heat exchanger represents the extent to which the heat exchanger can perform its desired function, i.e., how well it can transfer heat between two fluids it carries. Effectiveness is defined as the ratio of the actual heat transfer to the maximum possible heat transfer.
02

Can effectiveness be greater than 1?

No, the effectiveness of a heat exchanger cannot be greater than 1. An effectiveness value of 1 indicates that the heat exchanger has reached its maximum possible heat transfer capacity, and all of the heat from the hot fluid has been transferred to the cold fluid. Since it's physically impossible for the heat exchanger to transfer more heat than the available heat in the hot fluid, the effectiveness will never exceed 1.
03

Factors affecting the effectiveness of a heat exchanger

The effectiveness of a heat exchanger depends on the following factors: 1. **Heat exchanger type**: Different types of heat exchangers (such as parallel flow, counterflow, crossflow, shell and tube, etc.) have various heat transfer capacities and geometrical characteristics that affect their effectiveness. 2. **Heat transfer area**: The effectiveness of a heat exchanger is directly proportional to the heat transfer area available for the fluids. A larger heat transfer area enables more heat exchange between the fluids, resulting in higher effectiveness. 3. **Temperature difference between the fluids**: The larger the temperature difference between the hot and cold fluids, the greater the potential for heat transfer. Hence, a higher temperature difference generally leads to higher effectiveness. 4. **Flow rates of the fluids**: The flow rates of the hot and cold fluids impact the effectiveness of a heat exchanger. Higher flow rates tend to enhance the convective heat transfer, improving the effectiveness. 5. **Heat transfer coefficients**: The heat transfer coefficients of the fluids, as well as the material of the heat exchanger, play a significant role in determining the effectiveness. Higher heat transfer coefficients result in better heat transfer and effectiveness. 6. **Fouling**: Over time, deposits of unwanted materials (fouling) can accumulate on the surfaces of a heat exchanger, reducing its effectiveness. Regular cleaning and maintenance can help minimize the impact of fouling on heat exchanger effectiveness.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a parallel-flow heat exchanger, the NTU is calculated to be \(2.5\). The lowest possible effectiveness for this heat exchanger is (a) \(10 \%\) (b) \(27 \%\) (c) \(41 \%\) (d) \(50 \%\) (e) \(92 \%\)

A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin $\left(c_{p}=0.60 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\( from \)80^{\circ} \mathrm{F}\( to \)140^{\circ} \mathrm{F}$ by hot water $\left(c_{p}=1.0 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\( that enters the thin-walled \)0.5$-in-diameter tubes at \(175^{\circ} \mathrm{F}\) and leaves at \(120^{\circ} \mathrm{F}\). The total length of the tubes in the heat exchanger is \(400 \mathrm{ft}\). The convection heat transfer coefficient is $4 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\( on the glycerin (shell) side and \)50 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$ on the water (tube) side. Determine the rate of heat transfer in the heat exchanger \((a)\) before any fouling occurs and \((b)\) after fouling with a fouling factor of \(0.002 \mathrm{~h} \cdot \mathrm{ft}^{2}-\mathrm{F} / \mathrm{B}\) tu on the outer surfaces of the tubes.

An air handler is a large unmixed heat exchanger used for comfort control in large buildings. In one such application, chilled water $\left(c_{p}=4.2 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)$ enters an air handler at \(5^{\circ} \mathrm{C}\) and leaves at \(12^{\circ} \mathrm{C}\) with a flow rate of \(1000 \mathrm{~kg} / \mathrm{h}\). This cold water cools air \(\left(c_{p}=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\) from \(25^{\circ} \mathrm{C}\) to \(15^{\circ} \mathrm{C}\). The rate of heat transfer between the two streams is (a) \(8.2 \mathrm{~kW}\) (b) \(23.7 \mathrm{~kW}\) (c) \(33.8 \mathrm{~kW}\) (d) \(44.8 \mathrm{~kW}\) (e) \(52.8 \mathrm{~kW}\)

The cardiovascular countercurrent heat exchanger mechanism is to warm venous blood from \(28^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\) at a mass flow rate of \(2 \mathrm{~g} / \mathrm{s}\). The artery inflow temperature is \(37^{\circ} \mathrm{C}\) at a mass flow rate of \(5 \mathrm{~g} / \mathrm{s}\). The average diameter of the vein is \(5 \mathrm{~cm}\) and the overall heat transfer coefficient is \(125 \mathrm{~W} / \mathrm{m}^{2}\). K. Determine the overall blood vessel length needed to warm the venous blood to $35^{\circ} \mathrm{C}$ if the specific heat of both arterial and venous blood is constant and equal to \(3475 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).

The radiator in an automobile is a crossflow heat exchanger $\left(U A_{s}=10 \mathrm{~kW} / \mathrm{K}\right)\( that uses air \)\left(c_{p}=1.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)$ to cool the engine-coolant fluid \(\left(c_{p}=4.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\). The engine fan draws \(22^{\circ} \mathrm{C}\) air through this radiator at a rate of \(8 \mathrm{~kg} / \mathrm{s}\) while the coolant pump circulates the engine coolant at a rate of \(5 \mathrm{~kg} / \mathrm{s}\). The coolant enters this radiator at \(80^{\circ} \mathrm{C}\). Under these conditions, the effectiveness of the radiator is \(0.4\). Determine \((a)\) the outlet temperature of the air and \((b)\) the rate of heat transfer between the two fluids.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free