Chapter 11: Problem 78
A shell-and-tube heat exchanger with two shell passes and eight tube passes is used to heat ethyl alcohol \(\left(c_{p}=2670\right.\) $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})\( in the tubes from \)25^{\circ} \mathrm{C}\( to \)70^{\circ} \mathrm{C}\( at a rate of \)2.1 \mathrm{~kg} / \mathrm{s}$. The heating is to be done by water $\left(c_{p}=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the shell side at \)95^{\circ} \mathrm{C}$ and leaves at \(45^{\circ} \mathrm{C}\). If the overall heat transfer coefficient is \(950 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the heat transfer surface area of the heat exchanger.