Chapter 11: Problem 40
In the heat transfer relation \(\dot{Q}=U A_{s} F \Delta T_{\mathrm{lm}}\) for a heat exchanger, what is the quantity \(F\) called? What does it represent? Can \(F\) be greater than 1?
Chapter 11: Problem 40
In the heat transfer relation \(\dot{Q}=U A_{s} F \Delta T_{\mathrm{lm}}\) for a heat exchanger, what is the quantity \(F\) called? What does it represent? Can \(F\) be greater than 1?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a crossflow engine oil heater that uses ethylene glycol flowing at a temperature of \(110^{\circ} \mathrm{C}\) to heat the oil initially at \(10^{\circ} \mathrm{C}\). The ethylene glycol enters a tube bank consisting of copper tubes \((k=250 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) with staggered arrangement in a \(0.5-\mathrm{m} \times 0.5-\mathrm{m}\) plenum. The outside diameter of the \(0.5\)-m-long copper tubes is \(25 \mathrm{~mm}\), and the wall thickness is \(2 \mathrm{~mm}\). The longitudinal and transverse pitch of the rod bundles is \(0.035 \mathrm{~m}\) each. The engine oil to be heated flows inside the tubes with a mass flow rate of $4.05 \mathrm{~kg} / \mathrm{s}\(. Take the heat transfer coefficient of the oil to be \)2500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. If the minimum desired exit temperature of oil is \(70^{\circ} \mathrm{C}\) and the measured exit temperature of ethylene glycol is \(90^{\circ} \mathrm{C}\), determine (a) the mass flow rate of ethylene glycol and \((b)\) the number of tube rows. In your calculation, use the following properties for the ethylene glycol.
A shell-and-tube heat exchanger with two shell passes and eight tube passes is used to heat ethyl alcohol \(\left(c_{p}=2670\right.\) $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})\( in the tubes from \)25^{\circ} \mathrm{C}\( to \)70^{\circ} \mathrm{C}\( at a rate of \)2.1 \mathrm{~kg} / \mathrm{s}$. The heating is to be done by water $\left(c_{p}=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the shell side at \)95^{\circ} \mathrm{C}$ and leaves at \(45^{\circ} \mathrm{C}\). If the overall heat transfer coefficient is \(950 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the heat transfer surface area of the heat exchanger.
Can the temperature of the cold fluid rise above the inlet temperature of the hot fluid at any location in a heat exchanger? Explain.
A double-pipe counterflow heat exchanger is used to cool a hot fluid before it flows into a pipe system. The pipe system is mainly constructed with ASTM F2389 polypropylene pipes. According to the ASME Code for Process Piping, the recommended maximum temperature for polypropylene pipes is $99^{\circ} \mathrm{C}$ (ASME B31.3-2014, Table B-1). The heat exchanger's inner tube has negligible wall thickness. The convection heat transfer coefficients inside and outside of the heat exchanger inner tube are $1500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( and 1000 \)\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. The fouling factor estimated for the heat exchanger is \(0.0001 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\). The hot fluid \(\left(c_{p}=3800\right.\) \(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})\) enters the heat exchanger at \(150^{\circ} \mathrm{C}\) with a flow rate of $0.5 \mathrm{~kg} / \mathrm{s}\(. In the cold side, cooling fluid \)\left(c_{p}=4200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)$ enters the heat exchanger at \(10^{\circ} \mathrm{C}\) with a mass flow rate of $0.75 \mathrm{~kg} / \mathrm{s}$. Determine the heat transfer surface area that the heat exchanger needs to cool the hot fluid to \(99^{\circ} \mathrm{C}\) at the outlet so that it flows into the pipe system at a temperature not exceeding the recommended maximum temperature for polypropylene pipes.
A shell-and-tube heat exchanger with two shell passes and four tube passes is used for cooling oil $\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( from \)125^{\circ} \mathrm{C}\( to \)55^{\circ} \mathrm{C}$. The coolant is water, which enters the shell side at \(25^{\circ} \mathrm{C}\) and leaves at \(46^{\circ} \mathrm{C}\). The overall heat transfer coefficient is \(900 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). For an oil flow rate of \(10 \mathrm{~kg} / \mathrm{s}\), calculate the cooling water flow rate and the heat transfer area.
What do you think about this solution?
We value your feedback to improve our textbook solutions.