Chapter 11: Problem 2
When is a heat exchanger classified as being compact? Do you think a double- pipe heat exchanger can be classified as a compact heat exchanger?
Chapter 11: Problem 2
When is a heat exchanger classified as being compact? Do you think a double- pipe heat exchanger can be classified as a compact heat exchanger?
All the tools & learning materials you need for study success - in one app.
Get started for freeHow is the NTU of a heat exchanger defined? What does it represent? Is a heat exchanger with a very large NTU (say, 10 ) necessarily a good one to buy?
A heat exchanger is to cool oil $\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at a rate of \)10 \mathrm{~kg} / \mathrm{s}$ from \(120^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) by air. Determine the heat transfer rating of the heat exchanger and propose a suitable type.
The cardiovascular countercurrent heat exchanger has an overall heat transfer coefficient of \(100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Arterial blood enters at \(37^{\circ} \mathrm{C}\) and exits at \(27^{\circ} \mathrm{C}\). Venous blood enters at \(25^{\circ} \mathrm{C}\) and exits at $34^{\circ} \mathrm{C}$. Determine the mass flow rates of the arterial blood and venous blood in \(\mathrm{g} / \mathrm{s}\) if the specific heat of both arterial and venous blood is constant and equal to $3475 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\(, and the surface area of the heat transfer to occur is \)0.15 \mathrm{~cm}^{2}$.
A crossflow heat exchanger with both fluids unmixed has an overall heat transfer coefficient of \(200 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and a heat transfer surface area of \(400 \mathrm{~m}^{2}\). The hot fluid has a heat capacity of \(40,000 \mathrm{~W} / \mathrm{K}\), while the cold fluid has a heat capacity of \(80,000 \mathrm{~W} / \mathrm{K}\). If the inlet temperatures of both hot and cold fluids are \(80^{\circ} \mathrm{C}\) and $20^{\circ} \mathrm{C}$, respectively, determine the exit temperature of the cold fluid.
Saturated water vapor at \(100^{\circ} \mathrm{C}\) condenses in the shell side of a one-shell and two-tube heat exchanger with a surface area of $0.5 \mathrm{~m}^{2}\( and an overall heat transfer coefficient of \)2000 \mathrm{~W} / \mathrm{m}^{2}\(. \)\mathrm{K}\(. If cold water \)\left(c_{p c}=4179 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right.\( ) flowing at \)0.5 \mathrm{~kg} / \mathrm{s}\( enters the tube side at \)15^{\circ} \mathrm{C}$, determine the outlet temperature of the cold water and the heat transfer rate for the heat exchanger.
What do you think about this solution?
We value your feedback to improve our textbook solutions.