Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Water is boiled at \(150^{\circ} \mathrm{C}\) in a boiler by hot exhaust gases $\left(c_{p}=1.05 \mathrm{~kJ} / \mathrm{kg}^{\circ}{ }^{\circ} \mathrm{C}\right)\( that enter the boiler at \)540^{\circ} \mathrm{C}$ at a rate of \(0.4 \mathrm{~kg} / \mathrm{s}\) and leave at \(200^{\circ} \mathrm{C}\). The surface area of the heat exchanger is \(0.64 \mathrm{~m}^{2}\). The overall heat transfer coefficient of this heat exchanger is\(\mathrm{kg} / \mathrm{s}\) with cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the heat exchanger at \)20^{\circ} \mathrm{C}$ at a rate of \(0.6 \mathrm{~kg} / \mathrm{s}\). If the overall heat transfer coefficient is \(800 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), the heat transfer area of the heat exchanger is (a) \(0.745 \mathrm{~m}^{2}\) (b) \(0.760 \mathrm{~m}^{2}\) (c) \(0.775 \mathrm{~m}^{2}\) (d) \(0.790 \mathrm{~m}^{2}\) (e) \(0.805 \mathrm{~m}^{2}\)

Short Answer

Expert verified
a) 0.58 m² b) 1.44 m² c) 2.45 m² d) 3.86 m² e) 4.12 m²

Step by step solution

01

Calculate the heat transfer rate of exhaust gases

First, we need to calculate the heat transfer rate of exhaust gases, which can be found using the given temperatures, flow rate, and heat capacity of exhaust gases. Formula: $$Q_{gases} = m_{gases} \times c_{p,gases} \times (T_{in,gases} - T_{out,gases})$$ Given: \(m_{gases} = 0.4~kg/s\) \(c_{p,gases} = 1.05~kJ/kg \cdot K\) \(T_{in,gases} = 540^\circ C\) \(T_{out,gases} = 200^\circ C\) Now calculate: $$Q_{gases} = 0.4 \times (1.05 \times 10^3) \times (540 - 200)$$
02

Calculate the heat transfer rate of water

Now, we will calculate the heat transfer rate of water, which can be found using the given temperatures, flow rate, and heat capacity of water. Formula: $$Q_{water} = m_{water} \times c_{p,water} \times (T_{out,water} - T_{in,water})$$ Given: \(m_{water} = 0.6~kg/s\) \(c_{p,water} = 4.18~kJ/kg \cdot K\) \(T_{in,water} = 20^\circ C\) \(T_{out,water} = 150^\circ C\) Now calculate: $$Q_{water} = 0.6 \times (4.18 \times 10^3) \times (150 - 20)$$
03

Equate the heat transfer rates

Since the heat transfer rates of exhaust gases and water are equal in the heat exchanger, we can equate the values found in Steps 1 and 2. $$Q_{gases} = Q_{water}$$
04

Calculate the temperature difference

Next, we will calculate the temperature difference between the inlet and outlet of the heat exchanger, which is important for calculating the heat transfer area. Formula: $$\Delta T = \frac{T_{in,gases} + T_{out,gases}}{2} - \frac{T_{in,water} + T_{out,water}}{2}$$ Now calculate: $$\Delta T = \frac{540 + 200}{2} - \frac{20 + 150}{2}$$
05

Calculate the heat transfer area

Finally, we will calculate the heat transfer area of the heat exchanger using the overall heat transfer coefficient, the heat transfer rate, and the temperature difference. Formula: $$A = \frac{Q_{water}}{U \times \Delta T}$$ Given: \(U = 800~W/m^2 \cdot K\) Now calculate: $$A = \frac{Q_{water}}{800 \times \Delta T}$$ Calculate the values from the steps before, plug the numbers in, and then compare the result to the given options (a) to (e) to find the correct answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a crossflow engine oil heater that uses ethylene glycol flowing at a temperature of \(110^{\circ} \mathrm{C}\) to heat the oil initially at \(10^{\circ} \mathrm{C}\). The ethylene glycol enters a tube bank consisting of copper tubes \((k=250 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) with staggered arrangement in a \(0.5-\mathrm{m} \times 0.5-\mathrm{m}\) plenum. The outside diameter of the \(0.5\)-m-long copper tubes is \(25 \mathrm{~mm}\), and the wall thickness is \(2 \mathrm{~mm}\). The longitudinal and transverse pitch of the rod bundles is \(0.035 \mathrm{~m}\) each. The engine oil to be heated flows inside the tubes with a mass flow rate of $4.05 \mathrm{~kg} / \mathrm{s}\(. Take the heat transfer coefficient of the oil to be \)2500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. If the minimum desired exit temperature of oil is \(70^{\circ} \mathrm{C}\) and the measured exit temperature of ethylene glycol is \(90^{\circ} \mathrm{C}\), determine (a) the mass flow rate of ethylene glycol and \((b)\) the number of tube rows. In your calculation, use the following properties for the ethylene glycol.

Consider a closed-loop heat exchanger that carries exit water $\left(c_{p}=1 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right.$ and \(\left.\rho=62.4 \mathrm{lbm} / \mathrm{ft}^{3}\right)\) of a condenser side initially at \(100^{\circ} \mathrm{F}\). The water flows through a 500 -ft-long stainless steel pipe of 1 in inner diameter immersed in a large lake. The temperature of lake water surrounding the heat exchanger is $45^{\circ} \mathrm{F}$. The overall heat transfer coefficient of the heat exchanger is estimated to be $250 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. What is the exit temperature of the water from the immersed heat exchanger if it flows through the pipe at an average velocity of \(9 \mathrm{ft} / \mathrm{s}\) ? Use the \(\varepsilon-N T U\) method for analysis.

There are two heat exchangers that can meet the heat transfer requirements of a facility. Both have the same pumping power requirements, the same useful life, and the same price tag. But one is heavier and larger. Under what conditions would you choose the smaller one?

Consider the flow of saturated steam at \(270.1 \mathrm{kPa}\) that flows through the shell side of a shell-and-tube heat exchanger while the water flows through four tubes of diameter \(1.25 \mathrm{~cm}\) at a rate of $0.25 \mathrm{~kg} / \mathrm{s}$ through each tube. The water enters the tubes of the heat exchanger at \(20^{\circ} \mathrm{C}\) and exits at $60^{\circ} \mathrm{C}$. Due to the heat exchange with the cold fluid, steam is condensed on the tube's external surface. The convection heat transfer coefficient on the steam side is \(1500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), while the fouling resistance for the steam and water may be taken as \(0.00015\) and \(0.0001 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\), respectively. Using the \(\mathrm{NTU}\) method, determine \((a)\) effectiveness of the heat exchanger, (b) length of the tube, and (c) rate of steam condensation.

The cardiovascular countercurrent heat exchanger mechanism is to warm venous blood from \(28^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\) at a mass flow rate of \(2 \mathrm{~g} / \mathrm{s}\). The artery inflow temperature is \(37^{\circ} \mathrm{C}\) at a mass flow rate of \(5 \mathrm{~g} / \mathrm{s}\). The average diameter of the vein is \(5 \mathrm{~cm}\) and the overall heat transfer coefficient is \(125 \mathrm{~W} / \mathrm{m}^{2}\). K. Determine the overall blood vessel length needed to warm the venous blood to $35^{\circ} \mathrm{C}$ if the specific heat of both arterial and venous blood is constant and equal to \(3475 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free