Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The radiator in an automobile is a crossflow heat exchanger $\left(U A_{s}=10 \mathrm{~kW} / \mathrm{K}\right)\( that uses air \)\left(c_{p}=1.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)$ to cool the engine coolant fluid \(\left(c_{p}=4.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\). The engine fan draws \(30^{\circ} \mathrm{C}\) air through this radiator at a rate of \(12 \mathrm{~kg} / \mathrm{s}\) while the coolant pump circulates the engine coolant at a rate of \(5 \mathrm{~kg} / \mathrm{s}\). The coolant enters this radiator at \(80^{\circ} \mathrm{C}\). Under these conditions, what is the number of transfer units (NTU) of this radiator? (a) \(2.0\) (b) \(2.5\) (c) \(3.0\) (d) \(3.5\) (e) \(4.0\)

Short Answer

Expert verified
Answer: To find the NTU value, first follow the steps to determine the capacity rates of air and coolant, calculate the heat transfer effectiveness, and calculate the capacity rate ratio. Then, use the formula for a crossflow heat exchanger to find the NTU. The final calculated NTU value will be the answer.

Step by step solution

01

Determine capacity rates of air and coolant

The capacity rates C for both air and coolant can be determined by multiplying their respective mass flow rates with the specific heats: \(C_{air} = \dot{m}_{air} \times c_{p,air}\) \(C_{coolant} = \dot{m}_{coolant} \times c_{p,coolant}\)
02

Calculate the heat transfer effectiveness

By using the heat transfer equation \(Q = UA\Delta T_{lm}\), where \(\Delta T_{lm}\) is the log mean temperature difference, and setting equal to the product of capacity rates \(Q = C_{min}(T_{t, coolant} - T_{i, air})\). Divide through by \(C_{min}\Delta T_{lm}\), we get: \(\epsilon = \frac{Q}{C_{min}\Delta T_{lm}} = \frac{UA}{C_{min}}\)
03

Calculate the capacity rate ratio

The capacity rate ratio can be found by dividing the minimum capacity rate by the maximum capacity rate: \(C_r = \frac{C_{min}}{C_{max}}\)
04

Calculate the number of transfer units (NTU)

To find the NTU, we can use the following formula for a crossflow heat exchanger: \(\text{NTU} = \frac{-ln(1-\epsilon(1+C_r))}{1+C_r}\) Plug in the values found in steps 2 and 3 and calculate the NTU value. The calculated NTU value will be closest to one of the options, which will be our answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A heat exchanger is to cool oil $\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at a rate of \)10 \mathrm{~kg} / \mathrm{s}$ from \(120^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) by air. Determine the heat transfer rating of the heat exchanger and propose a suitable type.

In a one-shell and eight-tube-pass heat exchanger, the temperature of water flowing at rate of \(50,000 \mathrm{lbm} / \mathrm{h}\) is raised from \(70^{\circ} \mathrm{F}\) to \(150^{\circ} \mathrm{F}\). Hot air $\left(c_{p}=0.25 \mathrm{Btu} / \mathrm{bm}{ }^{\circ} \mathrm{F}\right)$ that flows on the tube side enters the heat exchanger at \(600^{\circ} \mathrm{F}\) and exits at \(300^{\circ} \mathrm{F}\). If the convection heat transfer coefficient on the outer surface of the tubes is $30 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2},{ }^{\circ} \mathrm{F}$, determine the surface area of the heat exchanger using both LMTD and \(\varepsilon-\mathrm{NTU}\) methods. Account for the possible fouling resistance of \(0.0015\) and $0.001 \mathrm{~h} \cdot \mathrm{ft}^{2}+{ }^{\circ} \mathrm{F} /$ Btu on the water and air sides, respectively.

The condenser of a room air conditioner is designed to reject heat at a rate of \(22,500 \mathrm{~kJ} / \mathrm{h}\) from refrigerant- \(134 \mathrm{a}\) as the refrigerant is condensed at a temperature of \(40^{\circ} \mathrm{C}\). Air \(\left(c_{p}=1005 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) flows across the finned condenser coils, entering at \(25^{\circ} \mathrm{C}\) and leaving at \(32^{\circ} \mathrm{C}\). If the overall heat transfer coefficient based on the refrigerant side is $150 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, determine the heat transfer area on the refrigerant side.

Consider a heat exchanger in which both fluids have the same specific heats but different mass flow rates. Which fluid will experience a larger temperature change: the one with the lower or higher mass flow rate?

Can the temperature of the hot fluid drop below the inlet temperature of the cold fluid at any location in a heat exchanger? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free