Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( enters a counterflow heat exchanger at \)18^{\circ} \mathrm{C}\( at a rate of \)0.7 \mathrm{~kg} / \mathrm{s}$ where it is heated by hot air \(\left(c_{p}=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\) that enters the heat exchanger at \(50^{\circ} \mathrm{C}\) at a rate of $1.6 \mathrm{~kg} / \mathrm{s}\( and leaves at \)25^{\circ} \mathrm{C}$. The maximum possible outlet temperature of the cold water is (a) \(25.0^{\circ} \mathrm{C}\) (b) \(32.0^{\circ} \mathrm{C}\) (c) \(35.5^{\circ} \mathrm{C}\) (d) \(39.7^{\circ} \mathrm{C}\) (e) \(50.0^{\circ} \mathrm{C}\)

Short Answer

Expert verified
a) 25°C b) 32°C c) 40°C d) 50°C Answer: b) 32°C

Step by step solution

01

Calculate the heat transfer for the hot air

Apply the energy balance equation for the hot air: $$Q = m_{hot} c_{p_{hot}} \Delta T_{hot}$$ We have the following values: Mass flow rate of hot air \((m_{hot}) = 1.6 \, kg/s\) Specific heat of hot air \((c_{p_{hot}}) = 1.0 \, kJ/(kg \cdot K)\) Temperature change for the hot air: \(\Delta T_{hot} = T_{inlet_{hot}} - T_{outlet_{hot}} = 50 - 25 = 25^{\circ} C\) Now, calculate the heat transfer: $$Q = 1.6 \, kg/s \cdot 1.0 \, kJ/(kg \cdot K) \cdot 25^{\circ} C = 40 \, kJ/s$$
02

Determine the outlet temperature of the cold water

Use the energy balance equation for the cold water: $$Q = m_{cold} c_{p_{cold}} (T_{outlet_{cold}} - T_{inlet_{cold}})$$ We have the following values: Mass flow rate of cold water \((m_{cold}) = 0.7 \, kg/s\) Specific heat of cold water \((c_{p_{cold}}) = 4.18 \, kJ/(kg \cdot K)\) Inlet temperature of cold water \((T_{inlet_{cold}}) = 18^{\circ} C\) Rearrange the energy balance equation to find the outlet temperature of the cold water: $$T_{outlet_{cold}} = \frac{Q}{m_{cold} c_{p_{cold}}} + T_{inlet_{cold}}$$ Now, calculate the outlet temperature: $$T_{outlet_{cold}} = \frac{40 \, kJ/s}{0.7 \, kg/s \cdot 4.18 \, kJ/(kg \cdot K)} + 18^{\circ} C = 32^{\circ} C$$ The maximum possible outlet temperature of the cold water is \(\boxed{32^{\circ} C}\), which corresponds to answer choice (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Saturated water vapor at \(40^{\circ} \mathrm{C}\) is to be condensed as it flows through the tubes of an air-cooled condenser at a rate of $0.2 \mathrm{~kg} / \mathrm{s}$. The condensate leaves the tubes as a saturated liquid at \(40^{\circ} \mathrm{C}\). The rate of heat transfer to air is (a) \(34 \mathrm{~kJ} / \mathrm{s}\) (b) \(268 \mathrm{~kJ} / \mathrm{s}\) (c) \(453 \mathrm{~kJ} / \mathrm{s}\) (d) \(481 \mathrm{~kJ} / \mathrm{s}\) (e) \(515 \mathrm{~kJ} / \mathrm{s}\)

Hot water coming from the engine is to be cooled by ambient air in a car radiator. The aluminum tubes in which the water flows have a diameter of $4 \mathrm{~cm}$ and negligible thickness. Fins are attached on the outer surface of the tubes in order to increase the heat transfer surface area on the air side. The heat transfer coefficients on the inner and outer surfaces are 2000 and \(150 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), respectively. If the effective surface area on the finned side is 12 times the inner surface area, the overall heat transfer coefficient of this heat exchanger based on the inner surface area is (a) \(760 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (b) \(832 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(947 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (d) \(1075 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(1210 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\)

Consider a closed-loop heat exchanger that carries exit water $\left(c_{p}=1 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right.$ and \(\left.\rho=62.4 \mathrm{lbm} / \mathrm{ft}^{3}\right)\) of a condenser side initially at \(100^{\circ} \mathrm{F}\). The water flows through a 500 -ft-long stainless steel pipe of 1 in inner diameter immersed in a large lake. The temperature of lake water surrounding the heat exchanger is $45^{\circ} \mathrm{F}$. The overall heat transfer coefficient of the heat exchanger is estimated to be $250 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. What is the exit temperature of the water from the immersed heat exchanger if it flows through the pipe at an average velocity of \(9 \mathrm{ft} / \mathrm{s}\) ? Use the \(\varepsilon-N T U\) method for analysis.

A pipe system is mainly constructed with ASTM F441 CPVC pipes. The ASME Code for Process Piping (ASME B31.3-2014, Table B-1) recommends that the maximum temperature limit for CPVC pipes be \(93.3^{\circ} \mathrm{C}\). A double-pipe heat exchanger is located upstream of the pipe system to reduce the hot water temperature before it flows into the CPVC pipes. The inner tube of the heat exchanger has a negligible wall thickness, and its length and diameter are $5 \mathrm{~m}\( and \)25 \mathrm{~mm}$, respectively. The convection heat transfer coefficients inside and outside of the heat exchanger inner tube are $3600 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( and \)4500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. The hot fluid enters the heat exchanger at \(105^{\circ} \mathrm{C}\) with a flow rate of $0.75 \mathrm{~kg} / \mathrm{s}$. In the cold fluid stream, water enters the heat exchanger at \(10^{\circ} \mathrm{C}\) and exits at \(80^{\circ} \mathrm{C}\). Determine whether this double-pipe heat exchanger should employ the parallel flow or the counterflow configuration to ensure that the hot water exiting the heat exchanger is \(93.3^{\circ} \mathrm{C}\) or lower.

A shell-and-tube heat exchanger is used for heating $14 \mathrm{~kg} / \mathrm{s}\( of oil \)\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( from \)20^{\circ} \mathrm{C}\( to \)46^{\circ} \mathrm{C}$. The heat exchanger has one shell pass and six tube passes. Water enters the shell side at \(80^{\circ} \mathrm{C}\) and leaves at \(60^{\circ} \mathrm{C}\). The overall heat transfer coefficient is estimated to be $1000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Calculate the rate of heat transfer and the heat transfer area.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free